留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续激光载波同步系统的慢漂抑制

贾燕庆 杜应超 黄文会

贾燕庆, 杜应超, 黄文会. 连续激光载波同步系统的慢漂抑制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230353
引用本文: 贾燕庆, 杜应超, 黄文会. 连续激光载波同步系统的慢漂抑制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230353
Jia Yanqing, Du Yingchao, Huang Wenhui. Slow drift suppression of continuous laser carrier synchronization system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230353
Citation: Jia Yanqing, Du Yingchao, Huang Wenhui. Slow drift suppression of continuous laser carrier synchronization system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230353

连续激光载波同步系统的慢漂抑制

doi: 10.11884/HPLPB202436.230353
基金项目: 国家自然科学基金项目(12027902)
详细信息
    作者简介:

    贾燕庆,fedordjia@outlook.com

    通讯作者:

    黄文会,huangwh@mail.tsinghua.edu.cn

  • 中图分类号: G312

Slow drift suppression of continuous laser carrier synchronization system

  • 摘要: 高精度同步系统是加速器产生高品质束流的关键因素之一,基于清华大学已有的连续激光载波同步系统,对不同接收端之间参考微波信号相位差的长时漂移,即同步系统慢漂进行了研究,提出了一种基于接收端参考微波信号幅值的电光调制器(EOM)偏置电压控制方法抑制慢漂。采用该方法后,清华大学甚高频光阴极电子枪测试平台L波段(1 300 MHz)同步系统慢漂被抑制到10.45 fs@24 h,清华大学汤姆逊散射装置(TTX)S波段(2 856 MHz)同步系统慢漂被抑制到10.53 fs@24 h,并且该方法可以使整套同步系统工作于室温环境,有效地提高了同步系统对工作环境温度的适应性。
  • 图  1  连续激光载波同步系统示意图

    Figure  1.  Schematic diagram of continuous laser carrier synchronization system

    图  2  EOM驱动电压-输出光强调制曲线

    Figure  2.  Curve of EOM driving voltage-output light intensity modulation

    图  3  慢漂成因测试实验系统结构

    Figure  3.  Experimental system structure for cause of slow drift

    图  4  慢漂成因测试实验结果

    Figure  4.  Experimental results of slow drift cause test

    图  5  慢漂抑制方法系统结构

    Figure  5.  System structure of slow drift suppression method

    图  6  同步系统慢漂测试系统结构

    Figure  6.  System structure of synchronous system slow drift test

    图  7  L波段同步系统慢漂测试结果

    Figure  7.  Result of synchronous system slow drift test on L wave-band

    图  8  S波段同步系统慢漂测试结果

    Figure  8.  Result of synchronous system slow drift test on S wave-band

  • [1] Şafak K, Droste S, Cheng H P H, et al. A pulsed-optical timing distribution system for LCLS-II[C]//CLEO: Science and Innovations 2020. 2020.
    [2] Wilcox R, Byrd J M, Doolittle L, et al. Stable transmission of radio frequency signals on fiber links using interferometric delay sensing[J]. Optics Letters, 2009, 34(20): 3050-3052. doi: 10.1364/OL.34.003050
    [3] Staples J W, Byrd J, Doolittle L, et al. A femtosecond-level fiber-optics timing distribution system using frequency-offset interferometry[C]//Proceedings of LINAC08. 2008: 1078-1080.
    [4] Huang G, Doolittle L R, Staples J W, et al. Signal processing for high precision phase measurements[C]//Proceedings of BIW10. 2010: 375-378.
    [5] Lin Zhenyang, Du Yingchao, Huang Wenhui, et al. A low level radio frequency system drift compensation technique by time-multiplexing pick-up/reference signals[J]. The Review of Scientific Instruments, 2019, 90: 114711. doi: 10.1063/1.5116755
    [6] Chen Wenfen, Wei Zhengjun, Li Guo, et al. An autobias control system for the electro—optic modulator used in a quantum key distribution system[J]. Chinese Physics B, 2014, 23: 080304. doi: 10.1088/1674-1056/23/8/080304
    [7] Tang Yanfeng, Li Hongzuo, Zhan Weida, et al. Research of auto control about biasvoltage of high speed and power electro-optic modulator[C]//Proceedings of 2011 International Conference on Electronics and Optoelectronics. 2011: V4-118-V4-121.
    [8] Sun Jiazheng, Xu Borui, Sun Wenhui, et al. The effect of bias and frequency on amplitude to phase conversion of photodiodes[J]. IEEE Photonics Journal, 2020, 12: 5502010.
    [9] 刘子溪, 曾成, 夏金松. 高线性度电光调制器研究进展[J]. 中国激光, 2022, 49:1206001 doi: 10.3788/CJL202249.1206001

    Liu Zixi, Zeng Cheng, Xia Jinsong. Research progress on high-linearity electro-optical modulators[J]. Chinese Laser Press, 2022, 49: 1206001 doi: 10.3788/CJL202249.1206001
    [10] Huang Gang, Jin Yang, Du Qiang, et al. Integrated phase reference distribution LLRF and laser synchronization system[Z]. LLRF2015 Shanghai, China.
    [11] Knott M, Gurd D, Lewis S, et al. EPICS: A control system software co-development success story[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 352(1/2): 486-491.
    [12] Thuot M E, Clausen M, Dalesio L R, et al. The success and the future of EPICS[C]//18th International Linear Accelerator Conference (Linac 96). 1996.
    [13] Lange R. Epics software developers meet at ITER[EB/OL]. (2017-10-02). https://www.iter.org/newsline/-/2821.
    [14] Dalesio L, Dohan D, Shen G, et al. Distributed information services for control systems[J]. Proceedings of ICALEPCS2013. 2013.
    [15] 杨晋. 百飞秒同步系统研究[D]. 北京: 清华大学, 2016

    Yang Jin. Research on hundred femtoseconds synchronization system for accelerator[D]. Beijing: Tsinghua University, 2016
    [16] 杜强. 锁模脉冲激光稳频技术与超快X射线源定时系统研究[D]. 北京: 清华大学, 2016

    Du Qiang. Study on mode-locked laser frequency stabilization and ultrafast X-ray source timing system[D]. Beijing: Tsinghua University, 2016
  • 加载中
图(8)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  19
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-16
  • 修回日期:  2024-03-08
  • 录用日期:  2024-03-08
  • 网络出版日期:  2024-03-15

目录

    /

    返回文章
    返回