留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宇称时间对称的P-SP拓扑无线电能传输系统特性分析

何禧煜 郭锋 徐兴鹏

何禧煜, 郭锋, 徐兴鹏. 基于宇称时间对称的P-SP拓扑无线电能传输系统特性分析[J]. 强激光与粒子束, 2024, 36: 039001. doi: 10.11884/HPLPB202436.230356
引用本文: 何禧煜, 郭锋, 徐兴鹏. 基于宇称时间对称的P-SP拓扑无线电能传输系统特性分析[J]. 强激光与粒子束, 2024, 36: 039001. doi: 10.11884/HPLPB202436.230356
He Xiyu, Guo Feng, Xu Xingpeng. Characteristic analysis of P-SP topology wireless power transfer system based on parity-time-symmetric principle[J]. High Power Laser and Particle Beams, 2024, 36: 039001. doi: 10.11884/HPLPB202436.230356
Citation: He Xiyu, Guo Feng, Xu Xingpeng. Characteristic analysis of P-SP topology wireless power transfer system based on parity-time-symmetric principle[J]. High Power Laser and Particle Beams, 2024, 36: 039001. doi: 10.11884/HPLPB202436.230356

基于宇称时间对称的P-SP拓扑无线电能传输系统特性分析

doi: 10.11884/HPLPB202436.230356
详细信息
    作者简介:

    何禧煜,hexiyu1588@163.com

    通讯作者:

    郭 锋,guofen9932@163.com

  • 中图分类号: TM724

Characteristic analysis of P-SP topology wireless power transfer system based on parity-time-symmetric principle

  • 摘要: 宇称时间(PT)对称原理已经被验证可以作为提高无线电能传输系统自由度的有力工具,但基于PT对称的并联-并联(P-P)拓扑结构无线电能传输(WPT)系统的工作范围仍然受到限制。为解决这一问题,提出了一种基于PT对称原理的并联-串并联(P-SP)补偿WPT系统。通过等效电路法化简系统电路模型,并利用耦合模理论(CMT)分析电容分配比对振荡频率、临界耦合系数、满足系统进入PT对称区域的耦合系数和负载电阻值范围以及传输效率等工作性能的影响。构建样机开展实验,以检验所提方法的适用性,结果表明:可以在仅损失2%系统传输效率的情况下,将传输距离由110 mm扩大到210 mm,该操作可为扩大应用范围、增加应用场景、优化激光无线充电系统中发送模块单元和接收模块单元的工作性能做准备。
  • 图  1  基于PT对称的P-SP拓扑的WPT系统

    Figure  1.  WPT system with P-SP compensation based on PT symmetry

    图  2  部分电路模型等效过程

    Figure  2.  Equivalent process of partial circuit models

    图  3  等效后的WPT系统模型

    Figure  3.  Equivalent WPT system model

    图  4  电容分配比对负载变化值的影响

    Figure  4.  Influence of capacitance distribution ratio on load variation value

    图  5  电容分配比对工作效率变化值和临界耦合系数变化值的影响

    Figure  5.  Influence of capacitance distribution ratio on the change value of working efficiency and the change value of critical coupling coefficient

    图  6  电容分配比对系统工作特性的影响

    Figure  6.  Influence of capacitance distribution ratio on the operating characteristics of the system

    图  7  电容分配比对PT对称区域的影响

    Figure  7.  Influence of capacitance distribution ratio on the symmetric region of PT

    图  8  参数设计及样机搭建

    Figure  8.  Parameter design and prototype construction

    图  9  系统性能理论与实验对比

    Figure  9.  Comparison of system performance theory and experiment

    表  1  实验系统参数

    Table  1.   Experimental system parameters

    L1/μH C1/pF r1 Rn L2/μH C2/pF r2 Re
    12 2.02 0.03 −480 12 2.02 0.03 7000
    下载: 导出CSV

    表  2  与其他文献提出的方法的比较

    Table  2.   Comparison with other methods proposed in literatures

    reference topology frequency
    f/MHz
    design
    complexity
    change in
    efficiency/%
    distance
    change/%
    this paper P-SP 1.02 low −2 +90
    Ref.[10] S-S 0.30 middle −4.7 +37.9
    Ref.[11] S-S 2 middle 0 +76
    Ref.[12] S-S 13 middle −6 +60
    Ref.[13] S-S 0.30 low −7 +30.4
    下载: 导出CSV
  • [1] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86. doi: 10.1126/science.1143254
    [2] 刘耀, 肖晋宇, 赵小令, 等. 无线电能传输技术发展与应用综述[J]. 电工电能新技术, 2023, 42(2):48-67

    Liu Yao, Xiao Jinyu, Zhao Xiaoling, et al. Development and application review on wireless power transmission technology[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(2): 48-67
    [3] 方思远, 方东. 低功率激光在手机无线充电上的应用[J]. 机电产品开发与创新, 2021, 34(5):11-13 doi: 10.3969/j.issn.1002-6673.2021.05.004

    Fang Siyuan, Fang Dong. Application of low power laser in mobile phone wireless charging[J]. Development & Innovation of Machinery & Electrical Products, 2021, 34(5): 11-13 doi: 10.3969/j.issn.1002-6673.2021.05.004
    [4] Li Changsheng, Dong Wenjie, Ding Libo, et al. Transfer characteristics of the nonlinear parity-time-symmetric wireless power transfer system at detuning[J]. Energies, 2020, 13: 5175. doi: 10.3390/en13195175
    [5] 胡洲, 曾招云, 唐佳, 等. 周期驱动的二能级系统中的准宇称-时间对称动力学[J]. 物理学报, 2022, 71:074207 doi: 10.7498/aps.70.20220270

    Hu Zhou, Zeng Zhaoyun, Tang Jia, et al. Quasi-parity-time symmetric dynamics in periodically driven two-level non-Hermitian system[J]. Acta Physica Sinica, 2022, 71: 074207 doi: 10.7498/aps.70.20220270
    [6] 王兆延, 丘东元, 张波, 等. 具有恒功率恒效率输出特性的三线圈WPT系统[J]. 中国电机工程学报, 2022, 42(20):7332-7343

    Wang Zhaoyan, Qiu Dongyuan, Zhang Bo, et al. Three-coil wireless power transfer system with constant output power and constant transfer efficiency characteristics[J]. Proceedings of the CSEE, 2022, 42(20): 7332-7343
    [7] Rayan B A, Subramaniam U, Balamurugan S. Wireless power transfer in electric vehicles: a review on compensation topologies, coil structures, and safety aspects[J]. Energies, 2023, 16: 3084. doi: 10.3390/en16073084
    [8] Rong Chao, Zhang Bo, Wei Zhihao, et al. A wireless power transfer system for spinal cord stimulation based on generalized parity–time symmetry condition[J]. IEEE Transactions on Industry Applications, 2022, 58(1): 1330-1339. doi: 10.1109/TIA.2021.3090751
    [9] Assawaworrarit S, Yu Xiaofang, Fan Shanhui. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit[J]. Nature, 2017, 546(7658): 387-390. doi: 10.1038/nature22404
    [10] Chen Jintao, Xie Fan, Zhang Bo, et al. Transmission range extension strategy of parity-time-symmetry-based wireless power transfer system by a boost converter[J]. International Journal of Circuit Theory and Applications, 2023, 51(2): 510-524. doi: 10.1002/cta.3434
    [11] Dong Wenjie, Li Changsheng, Zhang He, et al. Wireless power transfer based on current non-linear PT-symmetry principle[J]. IET Power Electronics, 2019, 12(7): 1783-1791. doi: 10.1049/iet-pel.2018.5937
    [12] Zhang Li, Yang Yihao, Zhao Jiang, et al. Demonstration of topological wireless power transfer[J]. Science Bulletin, 2021, 66(10): 974-980. doi: 10.1016/j.scib.2021.01.028
    [13] Kim H, Yoo S, Joo H, et al. Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity-time symmetry[J]. Science Advances, 2022, 8: eabo4610. doi: 10.1126/sciadv.abo4610
    [14] Tan Linlin, Yu Yongfeng, Wang Jiaqi, et al. Research on grid positioning strategy of coupling mechanism in wireless charging system with offset angle variable[J]. IEEE Transactions on Power Electronics, 2023, 38(5): 6670-6681. doi: 10.1109/TPEL.2023.3237901
    [15] Zhaksylyk Y, Hanke U, Azadmehr M. Single-sided interspiraled inductive impedance matching for magnetic resonance wireless power transfer[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2023, 70(5): 2189-2200. doi: 10.1109/TCSI.2023.3243924
    [16] Guan Zhipeng, Zhang Bo, Qiu Dongyuan. Influence of asymmetric coil parameters on the output power characteristics of wireless power transfer systems and their applications[J]. Energies, 2019, 12: 1212. doi: 10.3390/en12071212
    [17] Babic S, Salon S, Akyel C. The mutual inductance of two thin coaxial disk coils in air[J]. IEEE Transactions on Magnetics, 2004, 40(2): 822-825. doi: 10.1109/TMAG.2004.824810
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  36
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 修回日期:  2024-03-04
  • 录用日期:  2024-03-04
  • 网络出版日期:  2024-03-06
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回