留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MORPHY程序在铅冷快堆中的应用

李金洲 张滕飞 何东豪 潘清泉 刘晓晶

李金洲, 张滕飞, 何东豪, 等. MORPHY程序在铅冷快堆中的应用[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230357
引用本文: 李金洲, 张滕飞, 何东豪, 等. MORPHY程序在铅冷快堆中的应用[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230357
Li Jinzhou, Zhang Tengfei, He Donghao, et al. Application of MORPHY program in lead-cooled fast reactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230357
Citation: Li Jinzhou, Zhang Tengfei, He Donghao, et al. Application of MORPHY program in lead-cooled fast reactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230357

MORPHY程序在铅冷快堆中的应用

doi: 10.11884/HPLPB202436.230357
详细信息
    作者简介:

    李金洲,lijinzhou@sjtu.edu.cn

    通讯作者:

    何东豪,donghaohe@sjtu.edu.cn

  • 中图分类号: TL329

Application of MORPHY program in lead-cooled fast reactor

  • 摘要: 铅冷快堆在燃料增殖和核废料处理方面的优势明显,针对欧洲铅冷系统(ELSY),基于“两步法”,使用蒙特卡罗软件产生少群组件参数,经过截面修正后,传递给确定论程序MORPHY进行堆芯计算。分析截面修正处理、角度展开阶数对计算精度的影响,量化比较ELSY堆芯的有效增殖因数、归一化通量水平以及控制棒组的控制棒价值。对于不同算例,采用输运修正和中子倍增效应修正,堆芯计算采用S4阶展开条件下,有效增殖因数偏差最大为38×10−5,控制棒价值计算偏差在45×10−5之内,归一化中子通量密度最大绝对偏差为9.73%,平均绝对偏差在2%以内,初步验证MORPHY程序在铅冷快堆物理分析中具备可行性。
  • 图  1  ELSY组件排布

    Figure  1.  ELSY assembly arrangement

    图  2  不同种类网格划分方法

    Figure  2.  Different types of grid division

    图  3  二维全堆模型

    Figure  3.  2D full reactor model

    图  4  不同种类组件的单组件模型

    Figure  4.  Single assembly model of different kinds of assemblies

    图  5  二维模型归一化通量分布

    Figure  5.  Normalized flux distribution of 2D model

    图  6  二维模型归一化通量偏差分布

    Figure  6.  Normalized flux deviations distribution of 2D model

    图  7  控制棒全提出三维模型

    Figure  7.  3D model with all control rods (CRs) removed

    图  8  控制棒全提出模型通量偏差分布

    Figure  8.  Normalized flux deviations distribution of all CRs removed model

    图  9  控制棒半插入三维模型

    Figure  9.  3D model with CRs inserted halfway

    图  10  不同半插入方式的归一化通量分布

    Figure  10.  Normalized flux distribution of different insertion modes

    图  11  四种半插棒模型归一化通量偏差分布

    Figure  11.  Normalized flux deviation distribution of four inserted-halfway models

    图  12  控制棒全插入模型

    Figure  12.  CR fully-inserted model

    图  13  不同插入方法的归一化通量分布

    Figure  13.  Normalized flux distribution of different full insertion modes

    图  14  不同插入方法的归一化通量偏差分布

    Figure  14.  The normalized flux deviation distribution of different full insertion modes

    表  1  不同燃料组件的材料参数

    Table  1.   Material parameters of various fuel assemblies

    fuel type mass density/(g·cm−3) enrichment /% mass fraction
    of Pu-U/%
    235U 239Pu
    inner fuel 11.0049 0.4038 56.87 14.6
    middle fuel 11.0092 0.4039 56.87 15.5
    outer fuel 11.0236 0.4037 56.87 18.5
    下载: 导出CSV

    表  2  增加不同修正方法的keff计算结果

    Table  2.   The keff calculation results of different correction methods were added

    method keff (MORPHY) keff (Serpent) deviation/10−5
    no correction 1.02503 1.00790$ \pm $0.00009 +1713
    transport correction 1.00392 1.00790$ \pm $0.00009 −398
    (n,xn) correction 1.00656 1.00790$ \pm $0.00009 −134
    下载: 导出CSV

    表  3  不同SN展开阶数keff计算结果

    Table  3.   The keff calculation results of different SN expansion orders

    Model $ {S}_{N} $ keff keff deviation/$ {10}^{-5} $ MORPHY
    calculation time/(CPU·h)
    MORPHY Serpent
    $ {S}_{2} $ 1.00656 1.00790$ \pm $0.00009 −134 5
    Serpent(2D) $ {S}_{4} $ 1.00797 1.00790$ \pm $0.00009 +7 12
    $ {S}_{6} $ 1.00813 1.00790$ \pm $0.00009 +23 27
    $ {S}_{2} $ 1.00476 1.00790$ \pm $0.00009 −314 5
    Serpent(S) $ {S}_{4} $ 1.00531 1.00790$ \pm $0.00009 −259 12
    $ {S}_{6} $ 1.00528 1.00790$ \pm $0.00009 −262 27
    下载: 导出CSV

    表  4  控制棒全提出三维模型keff计算结果

    Table  4.   The keff calculation results of 3D model with all CRs removed

    model keff calculation results deviation/10−5
    keff (MORPHY) keff (Serpent)
    all CRs removed 0.99572 0.99594$ \pm $0.00008 −22
    下载: 导出CSV

    表  5  三维全堆控制棒半插入模型keff计算结果

    Table  5.   The keff calculation results of 3D full reactor model with CRs inserted halfway

    model keff calculation results deviation/10−5
    keff (MORPHY) keff (Serpent)
    all CRs inserted halfway 0.97691 0.97729$ \pm $0.00008 −38
    only CR A inserted halfway 0.99507 0.99486$ \pm $0.00007 +21
    only CR C inserted halfway 0.99516 0.99514$ \pm $0.00007 +2
    CRs A and B inserted halfway 0.99438 0.99454$ \pm $0.00007 −16
    下载: 导出CSV

    表  6  三维全堆控制棒半插入的反应性变化计算结果

    Table  6.   The calculation results of reactivity change of 3D full reactor with CRs inserted halfway

    model reactivity of MORPHY
    reactivity of Serpent deviation/10−5
    all CRs insert halfway 1881 1865 +16
    only CR A insert halfway 65 108 −43
    only CR C insert halfway 56 80 −24
    CRs A and B insert halfway 134 140 −6
    下载: 导出CSV

    表  7  三维全堆控制棒半插入的通量偏差

    Table  7.   Flux deviation of 3D full reactor with CRs inserted halfway

    model flux calculation results
    min negative deviation/% max positive deviation/% mean absolute deviation/%
    only A inserted halfway −6.57 2.97 1.60
    only C inserted halfway −8.87 3.19 1.70
    CRs A and B inserted halfway −9.73 3.11 1.76
    下载: 导出CSV

    表  8  三维全堆控制棒全插入模型keff计算结果

    Table  8.   The keff calculation results of three dimensional full reactor model with CRs fully inserted

    model keff calculation results
    MORPHY Serpent deviation/10−5
    all CRs fully insert 0.96911 0.96888$ \pm $0.00008 +23
    only CR A fully insert 0.99431 0.99460$ \pm $0.00007 −29
    only CR C fully insert 0.99440 0.99470$ \pm $0.00007 −30
    CR A and B fully insert 0.99405 0.99429$ \pm $0.00007 −24
    下载: 导出CSV

    表  9  控制棒组控制棒价值计算结果

    Table  9.   The calculation results of CR worth for CR assembly

    model CR worth calculation results
    MORPHY/10−5 Serpent/10−5 deviation/10−5
    all CRs fully insert 2661 2706 −45
    only CR A fully insert 141 134 +7
    only CR C fully insert 132 124 +8
    CR A and B fully insert 167 165 +2
    下载: 导出CSV

    表  10  三维全堆控制棒全插入的通量计算偏差

    Table  10.   The flux calculation deviation of 3D full reactor with CRs fully inserted

    model flux calculation results
    min negative deviation/% max positive deviation/% mean absolute deviation/%
    all CRs fully inserted −7.68 1.62 1.81
    only CR A fully inserted −5.39 2.84 1.62
    only CR C fully inserted −5.68 3.43 1.78
    CR A and B fully inserted −5.85 2.11 1.37
    下载: 导出CSV
  • [1] Lake J A. The fourth generation of nuclear power[J]. Progress in Nuclear Energy, 2002, 40(3/4): 301-307.
    [2] 马栩泉. 核能开发与应用[M]. 2版. 北京: 化学工业出版社, 2014

    Ma Xuquan. Development and application of nuclear energy[M]. 2nd ed. Beijing: Chemical Industry Press, 2014
    [3] 陈仁宗, 周琦, 朱庆福, 等. 小型铅冷快堆堆芯物理计算软件的开发与临界实验验证[J/OL]. 原子能科学技术, 2023: 1-10[2023-10-06]. http://kns.cnki.net/kcms/detail/11.2044.TL.20230905.1106.004.html

    Chen Renzong, Zhou Qi, Zhu Qingfu, et al. Development of reactor physics calculation code and critical experimental validation for small sized lead-cooled fast reactor[J/OL]. Atomic Energy Science and Technology, 2023: 1-10[2023-10-06]. http://kns.cnki.net/kcms/detail/11.2044.TL.20230905.1106.004.html.
    [4] 吴高晨. 基于RMC的连续能量蒙特卡罗均匀化与群常数产生研究[D]. 北京: 清华大学, 2018

    Wu Gaochen. Research on continuous energy Monte Carlo homogenization and group constant generation based on RMC[D]. Beijing: Tsinghua University, 2018
    [5] 杨鸣睿, 孙启政, 罗池旭, 等. 基于非结构网格输运模型的核-热耦合程序的开发与验证[J]. 核技术, 2023, 46:030601 doi: 10.11889/j.0253-3219.2023.hjs.46.030601

    Yang Mingrui, Sun Qizheng, Luo Chixu, et al. Development and verification of a neutronics-thermal hydraulics coupling code with unstructured meshes neutron transport model[J]. Nuclear Techniques, 2023, 46: 030601 doi: 10.11889/j.0253-3219.2023.hjs.46.030601
    [6] Leppänen J, Pusa M, Viitanen T, et al. The Serpent Monte Carlo code: status, development and applications in 2013[J]. Annals of Nuclear Energy, 2015, 82: 142-150.
    [7] Zhang Tengfei, Xiao Wei, Yin Han, et al. VITAS: a multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335
    [8] Xu Zhitao, Wu Hongchun, Li Yunzhao, et al. Improved discrete nodal transport method for treating void regions[J]. Annals of Nuclear Energy, 2017, 108: 172-180. doi: 10.1016/j.anucene.2017.04.048
    [9] 汪天雄. 高功率密度复杂堆芯燃料管理程序系统开发研究[D]. 上海: 上海交通大学, 2021: 20-35

    Wang Tianxiong. Development and research on the fuel management code system for nuclear core with high power density and complex geometry[D]. Shanghai: Shanghai Jiao Tong University, 2021: 20-35
    [10] 吴宏春, 孙幸光, 曹良志, 等. 二维中子输运方程计算的角度多重网格加速方法及外推加速技术[J]. 核动力工程, 2008, 29(4):5-9,30

    Wu Hongchun, Sun Xingguang, Cao Liangzhi, et al. Angular multigrid acceleration method and Lyusternik-Wagner extrapolation acceleration technique for two-dimensional neutron transport equation[J]. Nuclear Power Engineering, 2008, 29(4): 5-9,30
    [11] 吴宏春, 杨红义, 曹良志, 等. 金属冷却快堆关键分析软件的现状与展望[J]. 现代应用物理, 2021, 12: 010201

    Wu Hongchun, Yang Hongyi, Cao Liangzhi, et al. Status and prospect of key analysis software for liquid-metal-cooled fast reactor[J]. Modern Applied Physics, 2021, 12(1): 010201
    [12] Fridman E, Leppänen J. On the use of the Serpent Monte Carlo code for few-group cross section generation[J]. Annals of Nuclear Energy, 2011, 38(6): 1399-1405. doi: 10.1016/j.anucene.2011.01.032
    [13] Alemberti A, Carlsson J, Malambu E, et al. European lead fast reactor-ELSY[J]. Nuclear Engineering and Design, 2011, 241(9): 3470-3480. doi: 10.1016/j.nucengdes.2011.03.029
    [14] Ruggieri J M, Tommasi J, Lebrat J F, et al. ERANOS 2.1: international code system for GEN IV fast reactor analysis[C]//Proceedings of ICAPP 2006. 2006: 10-25.
    [15] 田超, 郑友琦, 李云召, 等. 压水堆各向异性散射的输运修正方法研究[J]. 原子能科学技术, 2017, 51(9):1599-1605 doi: 10.7538/yzk.2017.51.09.1599

    Tian Chao, Zheng Youqi, Li Yunzhao, et al. Transport correction method of PWR anisotropic scattering[J]. Atomic Energy Science and Technology, 2017, 51(9): 1599-1605 doi: 10.7538/yzk.2017.51.09.1599
    [16] Yamamoto A, Kitamura Y, Yamane Y. Simplified treatments of anisotropic scattering in LWR core calculations[J]. Journal of Nuclear Science and Technology, 2008, 45(3): 217-229. doi: 10.1080/18811248.2008.9711430
    [17] Fridman E, Leppänen J. Revised methods for few-group cross section generation in the serpent Monte Carlo code[C]//Proceedings of the PHYSOR 2012. 2012: 3-8.
    [18] 蔡利. 考虑中子泄漏修正的快堆蒙特卡罗少群截面参数制作与验证方法[J]. 强激光与粒子束, 2018, 30:026005 doi: 10.11884/HPLPB201830.170254

    Cai Li. Leakage-corrected fast reactor assembly calculation with Monte-Carlo code and its validation methodology[J]. High Power Laser and Particle Beams, 2018, 30: 026005 doi: 10.11884/HPLPB201830.170254
    [19] 杜夏楠, 吴宏春, 郑友琦. 蒙特卡罗方法在快堆组件参数计算中的应用[J]. 核动力工程, 2014, 35(s2):67-70

    Du Xia’nan, Wu Hongchun, Zheng Youqi. Application of Monte Carlo method in fast reactor assembly homogeneous constant calculation[J]. Nuclear Power Engineering, 2014, 35(s2): 67-70
    [20] 张滕飞, 殷晗, 孙启政, 等. 通用型中子输运程序VITAS应用研究[J]. 核动力工程, 2023, 44(2):15-23

    Zhang Tengfei, Yin Han, Sun Qizheng, et al. Application research on VITAS—a general-purpose neutron transport code[J]. Nuclear Power Engineering, 2023, 44(2): 15-23
  • 加载中
图(14) / 表(10)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  26
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 修回日期:  2024-01-31
  • 录用日期:  2024-01-31
  • 网络出版日期:  2024-02-21

目录

    /

    返回文章
    返回