留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光频梳下变频信号光纤延时频率恢复方法

王天恒 谢树果

王天恒, 谢树果. 光频梳下变频信号光纤延时频率恢复方法[J]. 强激光与粒子束, 2024, 36: 043009. doi: 10.11884/HPLPB202436.230358
引用本文: 王天恒, 谢树果. 光频梳下变频信号光纤延时频率恢复方法[J]. 强激光与粒子束, 2024, 36: 043009. doi: 10.11884/HPLPB202436.230358
Wang Tianheng, Xie Shuguo. Frequency recovery method for optical-frequency-comb-based down-converted signal reception using optical delay line[J]. High Power Laser and Particle Beams, 2024, 36: 043009. doi: 10.11884/HPLPB202436.230358
Citation: Wang Tianheng, Xie Shuguo. Frequency recovery method for optical-frequency-comb-based down-converted signal reception using optical delay line[J]. High Power Laser and Particle Beams, 2024, 36: 043009. doi: 10.11884/HPLPB202436.230358

光频梳下变频信号光纤延时频率恢复方法

doi: 10.11884/HPLPB202436.230358
详细信息
    作者简介:

    王天恒,12021041@buaa.edu.cn

    谢树果,xieshuguo@buaa.edu.cn

  • 中图分类号: TN249

Frequency recovery method for optical-frequency-comb-based down-converted signal reception using optical delay line

  • 摘要: 针对光频梳下变频信号接收过程中存在的频率信息丢失问题,提出了一种基于频率-相位映射的信号频率恢复方法,该方法使用可调光纤延迟线在两路光频梳变频链路之间产生一组固定已知的时延,时延在信号原始频率与下变频信号相位差之间建立映射关系,利用该映射关系可以从测得的相位差计算出信号的原始频率。分析了时延值等参数对频率恢复的影响,估计了该方法对相位测量不确定度的限值要求,最后给出了该方法具体实施方案中关键参数的设置策略。所有下变频信号的相位差可以通过快速傅里叶变换等数据处理一次性得出,因此该方法的时间代价和计算成本几乎不随着信号个数增加而增加。在不考虑下变频信号混叠的情况下,本文所提出的方法在理论上对处理信号的数量没有限制,因此相比于已有的光频梳下变频信号频率恢复方法,在多信号频率恢复方面更具有优势。
  • 图  1  光纤延时测频系统示意图

    Figure  1.  Scheme of a time-delay frequency recovery system

    图  2  实验装置实物图

    Figure  2.  Photograph of the experiment

    图  3  频率-相位差测试结果

    Figure  3.  Results of the phase difference measurements at different frequencies

    图  4  不同N值下相位分布“星座图”

    Figure  4.  Planisphere of N in different time delay

    表  1  实验主要仪器型号参数

    Table  1.   Main devices of the experiment

    device manufacture(version)
    signal source RIGOL (DSG3120)
    tunable optical time delay line LIGHTSOS (0-330 ps)
    oscilloscope R&S (RTO2014,1 GHz,10 GS/s)
    optical frequency comb made by Beihang University (213.2 MHz)
    photodector KEYANG (KY-PRM-200M-I-FC)
    electro optical modulator CONQUER (KG-AM-15-10G)
    下载: 导出CSV
  • [1] Xie Shuguo, Luan Shenshen, Wang Tianheng, et al. Frequency estimation method for wideband microwave camera[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(10): 6838-6847. doi: 10.1109/TAP.2021.3070190
    [2] Xie Shuguo, Wang Tianheng, Hao Xuchun, et al. Localization and frequency identification of large-range wide-band electromagnetic interference sources in electromagnetic imaging system[J]. Electronics, 2019, 8: 499. doi: 10.3390/electronics8050499
    [3] Luan Shenshen, Xie Shuguo, Wang Tianheng, et al. A space-variant deblur method for focal-plane microwave imaging[J]. Applied Sciences, 2018, 8: 2166. doi: 10.3390/app8112166
    [4] Shi Jingzhan, Zhang Fangzheng, Ben De, et al. Photonics-based broadband microwave instantaneous frequency measurement by frequency-to-phase-slope mapping[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(2): 544-552. doi: 10.1109/TMTT.2018.2875683
    [5] Zhu Beibei, Tang Jian, Zhang Weifeng, et al. Broadband instantaneous multi-frequency measurement based on a Fourier domain mode-locked laser[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(10): 4576-4583. doi: 10.1109/TMTT.2021.3103569
    [6] Singh K, Preußler S, Misra A, et al. Photonic microwave frequency measurement with high accuracy and sub-MHz resolution[J]. Journal of Lightwave Technology, 2022, 40(9): 2748-2753. doi: 10.1109/JLT.2022.3147962
    [7] 刘可欣, 高娜. 基于受激布里渊散射的光子辅助瞬时测频方案[J]. 光子学报, 2022, 51:0306008 doi: 10.3788/gzxb20225103.0306008

    Liu Kexin, Gao Na. Photon-assisted instantaneous frequency measurement scheme based on stimulated Brillouin scattering[J]. Acta Photonica Sinica, 2022, 51: 0306008 doi: 10.3788/gzxb20225103.0306008
    [8] 杨一鸣, 许方星. 一款光学瞬时测频接收机[J]. 电讯技术, 2020, 60(7):764-770

    Yang Yiming, Xu Fangxing. A photonic instantaneous frequency measurement receiver[J]. Telecommunication Engineering, 2020, 60(7): 764-770
    [9] Sasaki A I, Nagatsuma T. Millimeter-wave imaging using an electrooptic detector as a harmonic mixer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(5): 735-740. doi: 10.1109/2944.892612
    [10] Juodawlkis P W, Hargreaves J J, Younger R D, et al. Optical down-sampling of wide-band microwave signals[J]. Journal of Lightwave Technology, 2003, 21(12): 3116-3124. doi: 10.1109/JLT.2003.821736
    [11] Yasui T, Hayashi K, Ichikawa R, et al. Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings[J]. Optics Express, 2015, 23(9): 11367-11377. doi: 10.1364/OE.23.011367
    [12] Zhao Xin, Li Cui, Pan Yingling, et al. Dual-comb-assisted real-time microwave frequency measurement with a single mode-locked fiber laser[C]//2016 Conference on Lasers and Electro-Optics. 2016: JTh2A. 134.
    [13] Zhao Xin, Li Cui, Li Ting, et al. Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 1101008.
    [14] Yang Yan, Xie Shuguo, Dong Yakai, et al. A frequency recovering method for photonic under-sampling E-field measurement[J]. IEEE Sensors Journal, 2021, 21(12): 13495-13505. doi: 10.1109/JSEN.2021.3068003
    [15] Yang Yan, Xie Shuguo, Wang Tianheng, et al. Multi-frequency electric field measurement method for optical under-sampling system[J]. IEEE Sensors Journal, 2021, 21(20): 23024-23036. doi: 10.1109/JSEN.2021.3105275
    [16] Zhang Jiejun, Yao Jianping. Broadband microwave signal processing based on photonic dispersive delay lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1891-1903. doi: 10.1109/TMTT.2017.2665459
    [17] Lialios D I, Zekios C L, Georgakopoulos S V. A planar true time delay 2D beamformer[C]//2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. 2022: 1898-1899.
    [18] 吴彭生, 谷一英, 程旭升, 等. 用于X波段相控阵天线的高速可调光纤延迟线[J]. 光通信技术, 2013, 37(4):5-7

    Wu Pengsheng, Gu Yiying, Cheng Xusheng, et al. High-speed tunable optic true-time delay line for X-band antenna[J]. Optical Communication Technology, 2013, 37(4): 5-7
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  27
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 修回日期:  2024-02-05
  • 录用日期:  2024-02-05
  • 网络出版日期:  2024-03-18
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回