留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C波段小型化高功率微波输出窗的设计

卯鹏新 唐永亮 王秀芳 刘庆想

卯鹏新, 唐永亮, 王秀芳, 等. C波段小型化高功率微波输出窗的设计[J]. 强激光与粒子束, 2024, 36: 033008. doi: 10.11884/HPLPB202436.230359
引用本文: 卯鹏新, 唐永亮, 王秀芳, 等. C波段小型化高功率微波输出窗的设计[J]. 强激光与粒子束, 2024, 36: 033008. doi: 10.11884/HPLPB202436.230359
Mao Pengxin, Tang Yongliang, Wang Xiufang, et al. Design and research of C-band miniaturized high power microwave output window[J]. High Power Laser and Particle Beams, 2024, 36: 033008. doi: 10.11884/HPLPB202436.230359
Citation: Mao Pengxin, Tang Yongliang, Wang Xiufang, et al. Design and research of C-band miniaturized high power microwave output window[J]. High Power Laser and Particle Beams, 2024, 36: 033008. doi: 10.11884/HPLPB202436.230359

C波段小型化高功率微波输出窗的设计

doi: 10.11884/HPLPB202436.230359
基金项目: 高功率微波技术创新工作站开放课题
详细信息
    作者简介:

    卯鹏新,maopengxin@126.com

    通讯作者:

    王秀芳,xwang66880@163.com

  • 中图分类号: TM21

Design and research of C-band miniaturized high power microwave output window

  • 摘要: 为了满足高功率微波系统对微波输出窗高功率容量和紧凑化的应用需求,以传统盒型窗的设计理论为基础,通过优化窗体结构和添加过渡段等手段,设计了一种C波段小型化高功率微波输出窗。通过增大窗体表面积、改变矩形波导-圆波导过渡段的连接方式可提高功率容量并缩小微波输出窗的纵向尺寸;采用“I”型的窗体结构可有效抑制三相点(真空-介质-金属)附近的次级电子倍增效应对输出窗性能的影响。在电磁仿真的基础上采用粒子模拟(Particle-in-Cell)的方法研究了微波输出窗三相点附近的次级电子倍增效应,从微观角度进一步证实了“I”型窗体结构可使三相点位置发生移动,减小三相点发射的电子在窗片表面产生次级电子倍增效应的概率,降低微波输出窗的击穿风险。设计结果表明,微波输出窗在中心频点处的主模反射系数低于0.01,传输效率高于99.9%,功率容量可达47.9 MW。
  • 图  1  传统盒型窗的基本结构示意图

    Figure  1.  Basic structure diagram a of traditional box window

    图  2  盒型窗的反射和传输特性曲线

    Figure  2.  Reflection and transmission characteristic curves of the box window

    图  3  盒型窗表面的场强分布

    Figure  3.  Field distribution on the box window surface

    图  4  输出窗的主视图和侧视图

    Figure  4.  Main view and side view of the output window

    图  5  输出窗的反射和传输特性曲线

    Figure  5.  Reflection and transmission characteristic curves of the output window with power capacity increased

    图  6  输出窗表面的场分布

    Figure  6.  Field distribution on the output window surface with power capacity increased

    图  7  输出窗的主视图及侧视图

    Figure  7.  Main view and side view of the output window

    图  8  输出窗的反射和传输特性曲线

    Figure  8.  Reflection and transmission characteristic curves of the output window with optimized triple point

    图  9  输出窗表面的场分布

    Figure  9.  Field distribution on surface of the output window with optimized triple point

    图  10  聚乙烯材料的次级电子产生率曲线

    Figure  10.  Secondary electron production rate of PE

    图  11  粒子源设置示意图

    Figure  11.  Schematic diagram of particle source setup

    图  12  优化前后次级电子数目增长曲线对比

    Figure  12.  Comparison of secondary electron number growth curves before and after optimization

    图  13  优化前后窗体表面电子分布图

    Figure  13.  Electron distribution on the surface of the window before and after optimization

    表  1  优化参数值

    Table  1.   Optimized parameter values

    a1/mm b1/mm h/mm l/mm t/mm R/mm
    47.549 22.149 15 50 15.5 26.5
    下载: 导出CSV

    表  2  优化参数值

    Table  2.   Optimized parameter values

    h1/mm h2/mm h3/mm h4/mm h5/mm t1/mm r0/mm
    20 6 5.5 16.5 4.5 12.5 40
    r1/mm r2/mm r3/mm S1/mm S2/mm S3/mm S4/mm
    34 15 12 30.9 55 42 59.5
    下载: 导出CSV

    表  3  优化后的参数值

    Table  3.   Optimized parameter values

    l1/mm l2/mm l3/mm l4/mm l5/mm l6/mm l7/mm l8/mm
    4 9 1.8 10 8 4.5 6 8
    t2/mm d1/mm d2/mm d3/mm d4/mm r/mm r4/mm r5/mm
    13.1 31 55 42 59.5 40 17 12
    下载: 导出CSV
  • [1] 陈凯柏, 周晓东, 高敏. 高功率微波技术研究进展及应用[J]. 飞航导弹, 2019(6):1-6

    Chen Kaibai, Zhou Xiaodong, Gao Min. Research progress and application of high power microwave technology[J]. Winged Missile Journal, 2019(6): 1-6
    [2] 柴媛媛. Ku波段高功率紧凑型微波输出窗的研究[D]. 成都: 西南交通大学, 2016: 1-4

    Chai Yuanyuan. Research of the Ku band compact high-power microwave output window[D]. Chengdu: Southwest Jiaotong University, 2016: 1-4
    [3] 陈辉, 王丽, 罗勇, 等. Q波段回旋行波管新型盒型输出窗的设计[J]. 强激光与粒子束, 2015, 27:013002 doi: 10.11884/HPLPB201527.013002

    Chen Hui, Wang Li, Luo Yong, et al. Design of pill-box output window for high power Q-band gyrotron traveling wave tube[J]. High Power Laser and Particle Beams, 2015, 27: 013002 doi: 10.11884/HPLPB201527.013002
    [4] 唐浩倍. 大功率微波输能窗击穿现象研究[D]. 湘潭: 湘潭大学, 2020: 1-2

    Tang Haobei. Research on breakdown phenomenon of high power microwave window[D]. Xiangtan: Xiangtan University, 2020: 1-2
    [5] 杨修东, 张瑞. 具有渐变波导的W波段输出窗仿真与实验研究[J]. 真空科学与技术学报, 2016, 36(9):1024-1029

    Yang Xiudong, Zhang Rui. Simulation and experimental studies on a W-band output window with conversion waveguides[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(9): 1024-1029
    [6] 柴媛媛, 刘庆想, 张健穹, 等. X波段新型圆波导输出窗的研究[J]. 微波学报, 2014, 30(s1):525-527

    Chai Yuanyuan, Liu Qingxiang, Zhang Jianqiong, et al. The investigation of a new type circular waveguide window on X-band[J]. Journal of Microwaves, 2014, 30(s1): 525-527
    [7] Chang Chao, Liu Guozhi, Huang Huijun, et al. Suppressing high-power microwave dielectric multipactor by the sawtooth surface[J]. Physics of Plasmas, 2009, 16: 083501. doi: 10.1063/1.3200900
    [8] Chang Chao, Huang Huijun, Liu Guozhi, et al. The effect of grooved surface on dielectric multipactor[J]. Journal of Applied Physics, 2009, 105: 123305. doi: 10.1063/1.3153947
    [9] Edmiston G F, Krile J T, Neuber A A. Imaging of high-power microwave-induced surface flashover on a corrugated dielectric window[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 946-947. doi: 10.1109/TPS.2008.922428
    [10] Hao Xiwei, Zhang Guanjun, Qiu Shi, et al. Investigation on dielectric window treelike breakdown and suppression under HPM in vacuum[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1403-1410. doi: 10.1109/TPS.2010.2044154
    [11] 常超. 高功率微波系统中的击穿物理[M]. 北京: 科学出版社, 2016

    Chang Chao. Breakdown physics in high power microwave systems[M]. Beijing: Science Press, 2016
    [12] Zhang Xue, Wang Yong, Fan Junjie, et al. The suppression effect of a periodic surface with semicircular grooves on the high power microwave long pill-box window multipactor phenomenon[J]. Physics of Plasmas, 2014, 21: 092101. doi: 10.1063/1.4894222
    [13] 张雪, 王滔, 俞倩倩, 等. 波导型高功率微波输能窗的研究进展[J]. 强激光与粒子束, 2021, 33:023001 doi: 10.11884/HPLPB202133.200257

    Zhang Xue, Wang Tao, Yu Qianqian, et al. Research progress of high-power waveguide window[J]. High Power Laser and Particle Beams, 2021, 33: 023001 doi: 10.11884/HPLPB202133.200257
    [14] Cai Libing, Wang Jianguo, Zhu Xiangqin, et al. Suppression of multipactor discharge on a dielectric surface by an external magnetic field[J]. Physics of Plasmas, 2011, 18: 073504. doi: 10.1063/1.3602080
    [15] Korzekwa R, Lehr F M, Krompholz H G, et al. The influence of magnetic fields on dielectric surface flashover[J]. IEEE Transactions on Electron Devices, 1991, 38(4): 745-749. doi: 10.1109/16.75200
    [16] 丁耀根. 大功率速调管的理论与计算模拟[M]. 北京: 国防工业出版社, 2008

    Ding Yaogen. Theory and computer simulation of high power klystron[M]. Beijing: National Defense Industry Press, 2008
    [17] 丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010

    Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010
    [18] 王文祥. 真空电子器件[M]. 北京: 国防工业出版社, 2012

    Wang Wenxiang. Vacuum electronic devices[M]. Beijing: National Defense Industry Press, 2012
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  52
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 修回日期:  2024-01-11
  • 录用日期:  2024-01-11
  • 网络出版日期:  2024-02-02
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回