留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NFTHz加速器束流横向截面尺寸测量系统研制

朱文超 魏征宇 谢春杰 周泽然 王琳 梁钰

朱文超, 魏征宇, 谢春杰, 等. NFTHz加速器束流横向截面尺寸测量系统研制[J]. 强激光与粒子束, 2024, 36: 034004. doi: 10.11884/HPLPB202436.230361
引用本文: 朱文超, 魏征宇, 谢春杰, 等. NFTHz加速器束流横向截面尺寸测量系统研制[J]. 强激光与粒子束, 2024, 36: 034004. doi: 10.11884/HPLPB202436.230361
Zhu Wenchao, Wei Zhengyu, Xie Chunjie, et al. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36: 034004. doi: 10.11884/HPLPB202436.230361
Citation: Zhu Wenchao, Wei Zhengyu, Xie Chunjie, et al. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36: 034004. doi: 10.11884/HPLPB202436.230361

NFTHz加速器束流横向截面尺寸测量系统研制

doi: 10.11884/HPLPB202436.230361
基金项目: 国家自然科学基金项目( 51627901 )
详细信息
    作者简介:

    朱文超,zhuwench@mail.ustc.edu.cn

    通讯作者:

    梁 钰,ly4ever@mail.ustc.edu.cn

  • 中图分类号: TL503.6

Development of the NFTHz accelerator beam profile measurement system

  • 摘要: 针对太赫兹直线加速器,开发了基于EPICS分布式系统的横向截面尺寸测量系统。该系统采用束斑检测器完成束斑到光斑的转换,并通过远心镜头将光斑成像到CCD相机,完成对光斑图像的采集,之后基于ADAravis将相机采集的图像数据汇入到EPICS数据库。由于暗电流以及环境辐射的影响,在采集到的图像中会存在椒盐噪声,因此使用卷积神经网络(CNN)对图像中的椒盐噪声进行抑制,最后对图像进行高斯拟合计算出束流截面尺寸。实验结果表明,CNN可以有效地消除椒盐噪声,并且系统的分辨率达到15.8 μm,满足系统设计要求。
  • 图  1  束流横向截面尺寸测量系统

    Figure  1.  Beam profile measurement system

    图  2  海康数字相机MV-CA-016-10GM实物图

    Figure  2.  Picture of Hikvision digital camera MV-CA-016-10GM

    图  3  CNN网络结构

    Figure  3.  CNN network structure

    图  4  图像降噪过程

    Figure  4.  Image denoising processing

    图  5  CNN模型构建工作流程图

    Figure  5.  The FCN model construction workflow diagram

    图  6  控制电机IOC的软件架构

    Figure  6.  Software architecture for controlling the Motor IOC

    图  7  AreaDetector软件架构

    Figure  7.  Software architecture of AreaDetector

    图  8  束流截面测量系统

    Figure  8.  Beam profile measurement system

    图  9  分辨率标定

    Figure  9.  Resolution calibration

    图  10  中值滤波与CNN降噪性能对比

    Figure  10.  Denoising performance comparison between median filtering and CNN

    图  11  不同降噪算法性能对比

    Figure  11.  Performance comparison of different denoising algorithms

    表  1  GE680与MV-CH089-10GM参数对比

    Table  1.   Comparison of parameters between GE680 and MV-CH089-10GM

    model resolution minimum exposure time/μs onboard RAM/MB
    GE680 640×480 25 32
    MV-CA-016-10GM 1440×1080 1 128
    下载: 导出CSV

    表  2  降噪性能对比

    Table  2.   Denoising performance comparison

    noise addition rate noise image PSNR medianBlur PSNR FCN PSNR
    0.1 17.79 40.22 52.14
    0.2 14.59 28.36 51.95
    0.3 12.77 22.39 50.99
    0.4 11.22 18.20 49.52
    0.5 10.14 15.26 39.59
    0.6 9.18 13.41 47.31
    0.7 8.36 11.81 41.75
    0.8 7.06 9.38 41.83
    下载: 导出CSV
  • [1] Tian Huiyan, Huang Guorong, Xie Fengxin, et al. THz biosensing applications for clinical laboratories: bottlenecks and strategies[J]. TrAC Trends in Analytical Chemistry, 2023, 163: 117057. doi: 10.1016/j.trac.2023.117057
    [2] Lejeune C, Aubert J, Septier A. Emittance and brightness: definitions and measurements in applied charged particle optics part A[M]. New York: Academic Press, 1980: 159.
    [3] Lawson J D. The physics of charged-particle beams[M]. Oxford: Clarendon Press, 1988: 156.
    [4] Zhu Dechong, Yue Junhui, Sui Yanfeng, et al. Performance of beam size monitor based on Kirkpatrick–Baez mirror at SSRF[J]. Nuclear Science and Techniques, 2018, 29: 148. doi: 10.1007/s41365-018-0477-y
    [5] 唐兵. THz-FEL直线加速器在线控制与测量系统改进设计[D]. 武汉: 华中科技大学, 2018

    Tang Bing. Improved design of the online control and measurement system for THz-FEL LINAC[D]. Wuhan: Huazhong University of Science & Technology, 2018
    [6] 乔显杰, 李刚. 基于EPICS的StreamDevice的应用研究[J]. 核电子学与探测技术, 2011, 31(10):1073-1076

    Qiao Xianjie, Li Gang. Research of StreamDevice applications based on EPICS[J]. Nuclear Electronics & Detection Technology, 2011, 31(10): 1073-1076
    [7] Hu Zheng, Mi Qingru, Zheng Lifang, et al. EPICS data archiver at SSRF beamlines[J]. Nuclear Science and Techniques, 2014, 25: 020103.
    [8] Ma Tianji, Yang Yongliang, Sun Baogen, et al. Development and application of the new BPM system data processing program at Hefei Light Source[J]. Nuclear Science and Techniques, 2012, 23(5): 261-266.
    [9] Zhang Qian, Huang Chao, Yang Lihua, et al. Salt and pepper noise removal method based on graph signal reconstruction[J]. Digital Signal Processing, 2023, 135: 103941. doi: 10.1016/j.dsp.2023.103941
    [10] Raja J, Moorthi K, Rajendran A. De-noising of salt and pepper noise using deep learning-based alpha-guided grey wolf optimization[J]. Applied Soft Computing, 2022, 130: 109649. doi: 10.1016/j.asoc.2022.109649
    [11] Akkoul S, Ledee R, Leconge R, et al. A new adaptive switching median filter[J]. IEEE Signal Processing Letters, 2010, 17(6): 587-590. doi: 10.1109/LSP.2010.2048646
    [12] Weiss B. Fast median and bilateral filtering[J]. ACM Transactions on Graphics, 2006, 25(3): 519-526. doi: 10.1145/1141911.1141918
    [13] Sa P K, Majhi B. An improved adaptive impulsive noise suppression scheme for digital images[J]. AEU-International Journal of Electronics and Communications, 2010, 64(4): 322-328.
    [14] Fu Bo, Zhao Xiaoyang, Li Yi, et al. A convolutional neural networks denoising approach for salt and pepper noise[J]. Multimedia Tools and Applications, 2019, 78(21): 30707-30721. doi: 10.1007/s11042-018-6521-4
    [15] Prasetyo H, Hsia C H, Yu Kunyi. TV-based impulsive noise reduction with Weber Law detector[J]. Journal of Imaging Science and Technology, 2019, 63: jist0605.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  25
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19
  • 修回日期:  2023-12-21
  • 录用日期:  2023-12-11
  • 网络出版日期:  2024-02-28
  • 刊出日期:  2024-03-15

目录

    /

    返回文章
    返回