留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱导电薄层介质材料电磁耦合等效计算方法研究

鲍献丰 李瀚宇 周海京

鲍献丰, 李瀚宇, 周海京. 弱导电薄层介质材料电磁耦合等效计算方法研究[J]. 强激光与粒子束, 2024, 36: 043026. doi: 10.11884/HPLPB202436.230370
引用本文: 鲍献丰, 李瀚宇, 周海京. 弱导电薄层介质材料电磁耦合等效计算方法研究[J]. 强激光与粒子束, 2024, 36: 043026. doi: 10.11884/HPLPB202436.230370
Bao Xianfeng, Li Hanyu, Zhou Haijing. Research on equivalent calculation method for electromagnetic coupling of weakly conducting thin layer dielectric materials[J]. High Power Laser and Particle Beams, 2024, 36: 043026. doi: 10.11884/HPLPB202436.230370
Citation: Bao Xianfeng, Li Hanyu, Zhou Haijing. Research on equivalent calculation method for electromagnetic coupling of weakly conducting thin layer dielectric materials[J]. High Power Laser and Particle Beams, 2024, 36: 043026. doi: 10.11884/HPLPB202436.230370

弱导电薄层介质材料电磁耦合等效计算方法研究

doi: 10.11884/HPLPB202436.230370
基金项目: 中国工程物理研究院院长基金自强项目(YZJJZQ2022015)
详细信息
    作者简介:

    鲍献丰,bobbao0925@163.com

  • 中图分类号: TN248.6

Research on equivalent calculation method for electromagnetic coupling of weakly conducting thin layer dielectric materials

  • 摘要: 面向核电磁脉冲等强电磁环境下复合材料壳体平台的电磁环境效应分析需求,根据Maxwell-Ampere定理的积分形式,分析得到了时域有限差分方法在处理弱导电薄层介质材料参数时的等效计算方法,即当介质等效波长远大于模型厚度时,可将薄层模型适当增厚,同时等比例减小其电导率,参数等效前后模型的电磁耦合特性基本相同。该方法通过等效增厚薄层材料从而实现增大空间离散步长,减少网格量的目的,不需要改变传统时域有限差分方法的时间步进格式,不会破坏计算的稳定性。无限大有耗介质薄板、薄层球体、含薄层壳体无人机电磁耦合等算例表明,在包含毫米级厚度弱导电介质薄层壳体平台的核电磁脉冲耦合模拟中,该方法具有较好的适用性。
  • 图  1  薄层介质曲面和Ez的FDTD网格设置

    Figure  1.  Thin layer dielectric surface and FDTD mesh setup

    图  2  薄层介质曲面和Ez的FDTD原始网格及等效网格参数设置

    Figure  2.  Equivalent mesh parameter settings

    图  3  不同电导率下等效波长随频率变化曲线

    Figure  3.  Equivalent wavelength versus frequency curves for different conductivities

    图  4  薄板下方50 mm 处电场波形

    Figure  4.  Electric field waveforms at 50 mm below the thin plate

    图  5  球体中心点电场波形对比

    Figure  5.  Electric field waveforms at the center point of the sphere

    图  6  弱导电介质薄层壳体无人机模型

    Figure  6.  UAV model with weak conductive thin shell

    图  7  无人机内部电场波形监测点位置示意

    Figure  7.  Location diagram of monitoring points in the UAV

    图  8  无人机内部监测点时域波形(=30 mS)

    Figure  8.  Time domain electric field waveforms of monitoring points in the UAV (=30 mS)

    图  9  无人机内部监测点频域波形(=30 mS)

    Figure  9.  Frequency domain electric field waveforms of monitoring points in the UAV (=30 mS)

    图  10  无人机内部监测点时域波形(=90 mS)

    Figure  10.  Time domain electric field waveforms of monitoring points in the UAV (=90 mS)

    图  11  无人机内部监测点频域波形(=90 mS)

    Figure  11.  Frequency domain electric field waveforms of monitoring points in the UAV ( =90 mS)

    表  1  不同机身外壳厚度无人机模型计算开销对比(均采用56 CPU核并行计算)

    Table  1.   Comparison of computational overhead for UAV models with different thickness (56 CPU cores)

    thickness/mm mesh step/mm number of meshes/million dt/(10−3 ns) time/ns time steps calculation time/h
    10 10 52 19.1 100 5236 0.15
    3 3~10 298 57.2 100 17482 2.55
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12

    Du Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12
    [2] 孙斌, 吴天航, 张松, 等. HIRF环境下飞机复合材料燃油箱屏蔽效能研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(9):1197-1202,1228

    Sun Bin, Wu Tianhang, Zhang Song, et al. Research on shielding effectiveness of aircraft composite fuel tank in HIRF environment[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(9): 1197-1202,1228
    [3] 王天顺. 复合材料结构飞机电磁兼容性分析[C]//第四届全国电磁兼容学术交流大会论文集. 1996: 187-191

    Wang tianshun, EMC analyses of composite aircraft[C]//Proceedings of the 4th National Academic Exchange Conference on Electromagnetic Compatibility. 1996: 187-191
    [4] 孟雪松, 张瀚, 鲍献丰, 等. 碳纤维增强复合材料薄层高效建模方法研究[J]. 电波科学学报, 2019, 34(1):19-26

    Meng Xuesong, Zhang Han, Bao Xianfeng, et al. High efficient modeling techniques of carbon fiber reinforced composite thin layer[J]. Chinese Journal of Radio Science, 2019, 34(1): 19-26
    [5] 孟雪松, 鲍献丰, 刘德赟, 等. 嵌入式薄片模型在时域有限差分算法中的应用[J]. 强激光与粒子束, 2017, 29:123203 doi: 10.11884/HPLPB201729.170196

    Meng Xuesong, Bao Xianfeng, Liu Deyun, et al. Embedded thin film model in finite difference time domain method[J]. High Power Laser and Particle Beams, 2017, 29: 123203 doi: 10.11884/HPLPB201729.170196
    [6] Oh K S, Schutt-Aine J E. An efficient implementation of surface impedance boundary conditions for the finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(7): 660-666. doi: 10.1109/8.391136
    [7] Shi Lijuan, Yang Lixia, Ma Hui, et al. Collocated SIBC-FDTD method for coated conductors at oblique incidence[J]. Progress in Electromagnetics Research M, 2013, 30: 239-252. doi: 10.2528/PIERM13022512
    [8] Maloney J G, Smith G S. The use of surface impedance concepts in the finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(1): 38-48. doi: 10.1109/8.123351
    [9] 汪昕, 冯博文, 闫丽萍, 等. 复合材料薄层建模技术及电磁屏蔽效能评估[J]. 无线电工程, 2020, 50(12):1097-1101 doi: 10.3969/j.issn.1003-3106.2020.12.015

    Wang Xin, Feng Bowen, Yan Liping, et al. FDTD modeling of thin-layer composite slab and its application to shielding effectiveness prediction[J]. Radio Engineering, 2020, 50(12): 1097-1101 doi: 10.3969/j.issn.1003-3106.2020.12.015
    [10] 杨利霞, 马辉, 施卫东, 等. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析[J]. 物理学报, 2013, 62:034102 doi: 10.7498/aps.62.034102

    Yang Lixia, Ma Hui, Shi Weidong, et al. Finite difference time domain analysis on electromagnetic scattering characteristic of plasma thin layer based on surface impedance boundary condition method[J]. Acta Physica Sinica, 2013, 62: 034102 doi: 10.7498/aps.62.034102
    [11] 李瀚宇, 周海京, 廖成. JEMS-FDTD超大规模并行计算测试[J]. 强激光与粒子束, 2011, 23(11):3003-3006 doi: 10.3788/HPLPB20112311.3003

    Li Hanyu, Zhou Haijing, Liao Cheng. Parallel performance test of JEMS-FDTD on massively parallel processor[J]. High Power Laser and Particle Beams, 2011, 23(11): 3003-3006 doi: 10.3788/HPLPB20112311.3003
    [12] Li Hanyu, Zhou Haijing, Liu Yang, et al. Massively parallel FDTD program JEMS-FDTD and its applications in platform coupling simulation[C]//2014 International Symposium on Electromagnetic Compatibility. 2014: 229-233.
    [13] 李瀚宇, 周海京, 廖成. 时域全波电磁计算程序JEMS-FDTD在复杂电磁环境研究中的应用[J]. 强激光与粒子束, 2014, 26:073213 doi: 10.3788/HPLPB20142607.73213

    Li Hanyu, Zhou Haijing, Liu Yang. Application of JEMS-FDTD in complicated electromagnetic environment study[J]. High Power Laser and Particle Beams, 2014, 26: 073213 doi: 10.3788/HPLPB20142607.73213
    [14] 鲍献丰, 李瀚宇, 伍月千, 等. JEMS-FDTD软件在飞机HIRF仿真中的应用[J]. 强激光与粒子束, 2017, 29:103204 doi: 10.11884/HPLPB201729.170175

    Bao Xianfeng, Li Hanyu, Wu Yueqian, et al. Application of JEMS-FDTD in high intensity radiation field simulation on aircraft[J]. High Power Laser and Particle Beams, 2017, 29: 103204 doi: 10.11884/HPLPB201729.170175
    [15] 鲍献丰, 李瀚宇, 伍月千, 等. JEMS-FDTD软件在电磁脉冲区域传播数值模拟中的应用[J]. 强激光与粒子束, 2019, 31:103213 doi: 10.11884/HPLPB201931.190200

    Bao Xianfeng, Li Hanyu, Wu Yueqian, et al. Application of JEMS-FDTD in EMP regional propagation simulation[J]. High Power Laser and Particle Beams, 2019, 31: 103213 doi: 10.11884/HPLPB201931.190200
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  26
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2024-03-04
  • 录用日期:  2024-04-04
  • 网络出版日期:  2024-03-15
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回