留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强电磁辐照移除危险空间碎片的机理性实验研究

黄诺慈 闫二艳 杨浩 鲍向阳 刘星辰 何琥

黄诺慈, 闫二艳, 杨浩, 等. 基于强电磁辐照移除危险空间碎片的机理性实验研究[J]. 强激光与粒子束, 2024, 36: 043028. doi: 10.11884/HPLPB202436.230372
引用本文: 黄诺慈, 闫二艳, 杨浩, 等. 基于强电磁辐照移除危险空间碎片的机理性实验研究[J]. 强激光与粒子束, 2024, 36: 043028. doi: 10.11884/HPLPB202436.230372
Huang Nuoci, Yan Eryan, Yang Hao, et al. Experimental study on mechanism of removing hazardous space debris based on strong electromagnetic irradiation[J]. High Power Laser and Particle Beams, 2024, 36: 043028. doi: 10.11884/HPLPB202436.230372
Citation: Huang Nuoci, Yan Eryan, Yang Hao, et al. Experimental study on mechanism of removing hazardous space debris based on strong electromagnetic irradiation[J]. High Power Laser and Particle Beams, 2024, 36: 043028. doi: 10.11884/HPLPB202436.230372

基于强电磁辐照移除危险空间碎片的机理性实验研究

doi: 10.11884/HPLPB202436.230372
基金项目: 预先研究共用技术(50909020502)
详细信息
    作者简介:

    黄诺慈,hnc@mail.ustc.edu.cn

    通讯作者:

    闫二艳,yaneryan_2002@163.com

  • 中图分类号: TN99

Experimental study on mechanism of removing hazardous space debris based on strong electromagnetic irradiation

  • 摘要: 针对当前空间碎片数量急剧增长问题,探究基于强电磁辐照的主动清除手段的可行性,以多层隔热结构作为典型危险空间碎片模型,重点关注其电磁响应敏感的金属镀层部分,通过构建复杂多环境因素物理场,在S波段强电磁辐照和真空环境下进行了验证实验。实验结果表明,在10−3 Pa量级的真空环境下,强电磁脉冲与多层隔热结构金属镀层发生相互作用,引发放电现象并产生等离子体,同时伴随着宏观动力学特性的改变。通过观察和分析,我们探讨研究了可能的物理过程,包括强场击穿导致材料点放电、面闪络引起材料网状放电和镀层损伤、粒子吸收微波能量导致材料变形以及等离子体烧蚀引起材料损毁等。该研究为利用强电磁脉冲辐照主动移除危险空间碎片提供了重要的技术支持。
  • 图  1  实验平台示意图

    Figure  1.  Experimental platform diagram

    图  2  实验平台照片

    Figure  2.  Photo of experimental platform

    图  3  等离子体发光实验图

    Figure  3.  Plasma glow

    图  4  样品实验前形貌

    Figure  4.  Morphology of sample before experiment

    图  5  样品实验后形貌

    Figure  5.  Morphology of sample after experiment

    图  6  样品动力学运动过程

    Figure  6.  inetic process of the sample

    图  7  电磁波辐照铝膜释气电离模型示意图[15]

    Figure  7.  Schematic diagram of the outgassing and ionization process of aluminum films irradiated by electromagnetic waves[15]

  • [1] 吴冀川, 赵剑衡, 黄元杰, 等. 基于脉冲激光的空间碎片移除技术: 综述与展望[J]. 强激光与粒子束, 2022, 34:011006 doi: 10.11884/HPLPB202234.210334

    Wu Jichuan, Zhao Jianheng, Huang Yuanjie, et al. Removal of space debris by pulsed laser: Overview and future perspective[J]. High Power Laser and Particle Beams, 2022, 34: 011006 doi: 10.11884/HPLPB202234.210334
    [2] Kitamura S. Large space debris reorbiter using ion beam irradiation[C]//The 61st International Astronautical Federation. 2010: 725-735.
    [3] Aslanov V S, Ledkov A S. Dynamics and control of space debris during its contactless ion beam assisted removal[J]. Journal of Physics: Conference Series, 2020, 1705: 012006. doi: 10.1088/1742-6596/1705/1/012006
    [4] Ishige Y, Kawamoto S, Kibe S. Study on electrodynamic tether system for space debris removal[J]. Acta Astronautica, 2004, 55(11): 917-929. doi: 10.1016/j.actaastro.2004.04.015
    [5] Andrenucci M, Pergola P, Ruggiero A, et al. Active removal of space debris - expanding foam application for active debris removal[R]. Affiliation: European Space Agency, Advanced Concepts Team, 2011.
    [6] Bennett J C, Sang J, Smith C H, et al. Accurate orbit predictions for debris orbit manoeuvre using ground-based lasers[J]. Advances in Space Research, 2013, 52(11): 1876-1887. doi: 10.1016/j.asr.2013.08.029
    [7] Elizabeth S. Spacecraft materials development programs for thermal control coatings and space environmental testing[J]. Solar Energy Mater Solar Cells, 2000, 7(1): 73-83.
    [8] 李鹏, 肖泽娟, 程惠尔. 空间多层打孔隔热材料热分析数值方法研究[J]. 中国空间科学技术, 2006, 26(5):17-20,36

    Li Peng, Xiao Zejuan, Cheng Huier. Numerical model study of thermal analysis on multilayer perforated insulation material in orbit[J]. Chinese Space Science and Technology, 2006, 26(5): 17-20,36
    [9] 赵一搏, 杨汝平, 邱日尧, 等. 多层隔热结构研究进展[J]. 宇航材料工艺, 2013, 43(4):29-34

    Zhao Yibo, Yang Ruping, Qiu Riyao, et al. Recent progress on multi-layer insulation structures[J]. Aerospace Materials & Technology, 2013, 43(4): 29-34
    [10] 李尧. 真空条件下航天器热控层材料的电磁辐照效应研究[D]. 北京: 华北电力大学, 2022

    Li Yao. Study on electromagnetic radiation effect of thermal control layer in a vacuum[D]. Beijing: North China Electric Power University, 2022
    [11] 元光. 场发射理论研究进展[J]. 真空电子技术, 2012(6):30-34

    Yuan Guang. Theoretical progress in field electron emission[J]. Vacuum Electronics, 2012(6): 30-34
    [12] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟[J]. 物理学报, 2009, 58(5):3268-3273 doi: 10.7498/aps.58.3268

    Cai Libing, Wang Jianguo. Numerical simulation of the breakdown on HPM dielectric surface[J]. Acta Physica Sinica, 2009, 58(5): 3268-3273 doi: 10.7498/aps.58.3268
    [13] 董烨, 董志伟, 周前红, 等. 释气对介质沿面闪络击穿影响的粒子模拟[J]. 物理学报, 2014, 63:027901 doi: 10.7498/aps.63.027901

    Dong Ye, Dong Zhiwei, Zhou Qianhong, et al. Particle-in-cell simulation on effect of outgassing on flashover and breakdown on dielectric surface in high-power microwave environment[J]. Acta Physica Sinica, 2014, 63: 027901 doi: 10.7498/aps.63.027901
    [14] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究[J]. 物理学报, 2011, 60:025217 doi: 10.7498/aps.60.025217

    Cai Libing, Wang Jianguo. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave[J]. Acta Physica Sinica, 2011, 60: 025217 doi: 10.7498/aps.60.025217
    [15] 李尧, 范杰清, 张芳, 等. 电磁辐照金属铝膜材料释气效应研究[J]. 强激光与粒子束, 2021, 33:123008 doi: 10.11884/HPLPB202133.210191

    Li Yao, Fan Jieqing, Zhang Fang, et al. Study on outgassing effect of electromagnetic radiation on aluminum film[J]. High Power Laser and Particle Beams, 2021, 33: 123008 doi: 10.11884/HPLPB202133.210191
  • 加载中
图(7)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  28
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-25
  • 修回日期:  2024-03-22
  • 录用日期:  2024-03-22
  • 网络出版日期:  2024-03-28
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回