留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁防护技术发展综述与展望

毋召锋 徐延林 刘培国 查淞

毋召锋, 徐延林, 刘培国, 等. 电磁防护技术发展综述与展望[J]. 强激光与粒子束, 2024, 36: 043001. doi: 10.11884/HPLPB202436.230375
引用本文: 毋召锋, 徐延林, 刘培国, 等. 电磁防护技术发展综述与展望[J]. 强激光与粒子束, 2024, 36: 043001. doi: 10.11884/HPLPB202436.230375
Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36: 043001. doi: 10.11884/HPLPB202436.230375
Citation: Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36: 043001. doi: 10.11884/HPLPB202436.230375

电磁防护技术发展综述与展望

doi: 10.11884/HPLPB202436.230375
基金项目: 国家自然科学基金项目(62101564、62293491、62293494);湖南省自然科学基金项目(2022JJ20045)
详细信息
    作者简介:

    毋召锋,wuzhaofeng13@nudt.edu.cn

    通讯作者:

    徐延林,13298656824@163.com

  • 中图分类号: TN82

Review and prospect of electromagnetic protection technology development

  • 摘要: 针对复杂电磁对抗环境中电子信息装备面临的强电磁环境威胁以及防护加固需求,对强电磁防护技术的发展现状进行了综述,并提出了强电磁系统级综合防护的发展展望。强电磁防护是为了保证电子信息装备在强电磁环境中免受损伤或损毁的技术手段,从电磁波的耦合途径分析了当前电磁防护的重点和难点,然后分别以限幅器技术、频率滤波技术、能量选择防护技术三个方面对前门防护技术的发展现状进行了分析总结,最后从新型屏蔽材料和防护器件两个方面对新型电磁防护技术进行了展望,并从前后门一体防护、场路一体防护、多域联合防护三个角度对系统级电磁防护进行了总结,为电子信息装备在复杂电磁环境下的电磁防护加固设计提供了支撑。
  • 图  1  电磁攻击进入电子设备的耦合途径示意图

    Figure  1.  Coupling pathways for electromagnetic attacks entering electronic devices

    图  2  两款固态半导体限幅器[13-14]

    Figure  2.  Two types of solid-state semiconductor limiters[13-14]

    图  3  带通滤波器对于核电磁脉冲的防护效果仿真结果

    Figure  3.  Simulation results of bandpass filter protection against nuclear electromagnetic pulses

    图  4  限幅滤波器及其时域响应波形

    Figure  4.  Limiting filter and its time-domain response waveforms

    图  5  能量选择表面的工作示意图

    Figure  5.  Schematic diagram of energy selective surface

    图  6  两种超宽带能量选择防护结构[3856]

    Figure  6.  Two types of ultra wideband energy selective protection structures[3856]

    图  7  北斗导航接收机的强电磁防护罩

    Figure  7.  Strong electromagnetic pulse protective radome for Beidou navigation receiver

    图  8  电子信息设备前后门综合防护方案

    Figure  8.  Front and back doors integrated protection method of electronic information equipment

    图  9  射频收发通道的场路一体防护方案

    Figure  9.  Field-circuit integrated protection method for transmitting and receiving RF channels

    表  1  美国主要厂商典型限幅器性能指标(CW:连续波;P:脉冲)

    Table  1.   Performance of typical limiters from American (CW: continuous wave; P: pulse)

    product model frequency/GHz insertion loss/dB withstand power/W manufacturer
    TGL2201 2~25 1.0 5 (CW) Qorvo
    TGL2927-SM 2~4 0.5 200 (P) Qorvo
    TGL2210-SM 0.05~6 0.7 100 (P) Qorvo
    MALI-010365 2.7~3.8 0.5 100 (P) Apitech
    ACLM-4851 1.0~2.0 1.0 1000 (P) Aeroflex
    ACLM-4601 0.5~18 1.8 200 (P) Aeroflex
    下载: 导出CSV
  • [1] 郑浩月, 贺宇, 何小东, 等. 电控单元强电磁安全威胁分析及电源防护研究[J]. 强激光与粒子束, 2020, 32:073003 doi: 10.11884/HPLPB202032.200092

    Zheng Haoyue, He Yu, He Xiaodong, et al. Analysis of safety threat from high electromagnetic pulses and power protection research of vehicle electronic control unit[J]. High Power Laser and Particle Beams, 2020, 32: 073003 doi: 10.11884/HPLPB202032.200092
    [2] 刘昌, 李瀚宇, 鲍献丰, 等. 面向超短波接收机射频前端的电磁脉冲效应仿真与效应分级方法[J]. 强激光与粒子束, 2021, 33:123016 doi: 10.11884/HPLPB202133.210380

    Liu Chang, Li Hanyu, Bao Xianfeng, et al. Electromagnetic pulse effect simulation and rating of RF front-end of super-heterodyne receiver[J]. High Power Laser and Particle Beams, 2021, 33: 123016 doi: 10.11884/HPLPB202133.210380
    [3] 宋捷, 鲁祖坤, 刘哲, 等. 卫星导航时域自适应抗干扰技术综述[J]. 系统工程与电子技术, 2023, 45(4):1164-1176

    Song Jie, Lu Zukun, Liu Zhe, et al. Review on the time-domain interference suppression of navigation receiver[J]. Systems Engineering and Electronics, 2023, 45(4): 1164-1176
    [4] 许辰人, 马翔天, 徐昊天, 等. 5G抗干扰技术综述[J]. 电子学报, 2023, 51(3):765-778

    Xu Chenren, Ma Xiangtian, Xu Haotian, et al. A survey of 5G anti-interference technology[J]. Acta Electronica Sinica, 2023, 51(3): 765-778
    [5] Wang Huida, Song Wei, Xiao Renzhen, et al. A dual-frequency high-power microwave generator[J]. IEEE Transactions on Plasma Science, 2019, 47(9): 4287-4291. doi: 10.1109/TPS.2019.2932039
    [6] Zhang Haoran, Shu Ting, Li Zhiqiang, et al. A compact 4 GW pulse generator based on pulse forming network-Marx for high-power microwave application[J]. Review of Scientific Instruments, 2021, 92: 064707. doi: 10.1063/5.0040111
    [7] 姚斌. 低噪放电磁脉冲前后门联合耦合效应研究[D]. 西安: 西安电子科技大学, 2022

    Yao Bin. Research on the joint coupling effect of front door and back door of electromagnetic pulse on low noise amplifier[D]. Xi’an: Xidian University, 2022
    [8] 冯寒亮, 武晓龙, 李勇. 美国国会“电磁脉冲攻击对美国的威胁评估委员会”及其评估报告简析[J]. 装备环境工程, 2020, 17(6):132-137

    Feng Hanliang, Wu Xiaolong, Li Yong. Review of the U. S. Congress’ commission to assess the threat to the United States from electromagnetic pulse attack and its reports[J]. Equipment Environmental Engineering, 2020, 17(6): 132-137
    [9] 吴琦, 刘元安, 闻映红, 等. 重大基础设施非核强电磁脉冲威胁与防护策略研究[J]. 中国工程科学, 2022, 24(4):249-258

    Wu Qi, Liu Yuanan, Wen Yinghong, et al. Non-nuclear electromagnetic pulse threat of critical infrastructures and protection strategies[J]. Strategic Study of Chinese Academy of Engineering, 2022, 24(4): 249-258
    [10] Arnesen O H, Hoad R. Overview of the European project ‘HIPOW’[J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 64-67.
    [11] Van De Beek S, Dawson J, Flintoft I, et al. Overview of the European project STRUCTURES[J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 70-79. doi: 10.1109/MEMC.2014.7023202
    [12] 刘培国, 刘晨曦, 谭剑锋, 等. 强电磁防护技术研究进展[J]. 中国舰船研究, 2015, 10(2):2-6

    Liu Peiguo, Liu Chenxi, Tan Jianfeng, et al. Analysis of the research development on HPM/EMP protection[J]. Chinese Journal of Ship Research, 2015, 10(2): 2-6
    [13] Yang S S, Kim T Y, Kong D K, et al. A novel analysis of a Ku-band planar p-i-n diode limiter[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(6): 1447-1460. doi: 10.1109/TMTT.2009.2019993
    [14] Li Shifeng, Ma Lijun, Wang Leiyang, et al. High power 10-18 GHz monolithic limiter based on GaAs p-i-n technology[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(9): 1107-1110. doi: 10.1109/LMWC.2022.3161152
    [15] 彭龙新, 李真, 徐波, 等. X波段100W GaAs单片大功率PIN限幅器[J]. 固体电子学研究与进展, 2017, 37(2):99-102,139

    Peng Longxin, Li Zhen, Xu Bo, et al. 100 W X-band GaAs monolithic high power PIN limiter[J]. Research & Progress of SSE, 2017, 37(2): 99-102,139
    [16] 邓世雄, 高长征, 陈书宾, 等. 小型化高功率微波限幅器研究[J]. 微波学报, 2020, 36(5):70-73

    Deng Shixiong, Gao Changzheng, Chen Shubin, et al. Research on miniaturized high power microwave limiter[J]. Journal of Microwaves, 2020, 36(5): 70-73
    [17] 毋召锋. 高速大功率限幅技术研究[D]. 长沙: 国防科技大学, 2019

    Wu Zhaofeng. Study of quick-response and high-power limiting technology[D]. Changsha: National University of Defense Technology, 2019
    [18] 谢彦召, 王赞基, 王群书, 等. 高空核爆电磁脉冲波形标准及特征分析[J]. 强激光与粒子束, 2003, 15(8):781-787

    Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 2003, 15(8): 781-787
    [19] Ricketts L W, Bridges J E, Miletta J. EMP radiation and protective techniques[M]. New York: Wiley, 1976.
    [20] 李强兵, 刘丹. 一种电磁脉冲辐射系统设计[J]. 太赫兹科学与电子信息学报, 2021, 19(3):453-457

    Li Qiangbing, Liu Dan. A design of electromagnetic pulse radiation system[J]. Journal of Terahertz Science and Electronic Information Technology, 2021, 19(3): 453-457
    [21] Lee S, Yoon S, Lee J. Electroformed dual-mode waveguide filter with no tuning screws[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(1): 138-141. doi: 10.1109/TCPMT.2023.3237222
    [22] Eskandari A R, Kheirdoost A, Haghparast M. Improvement of passband flatness for a compact, narrowband, and highly selective TM dual-mode filter[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(4): 1591-1597. doi: 10.1109/TMTT.2019.2963662
    [23] Xu Kaida, Lu Sen, Guo Yingjiang, et al. Quasi-reflectionless filters using simple coupled line and T-shaped microstrip structures[J]. IEEE Journal of Radio Frequency Identification, 2022, 6: 54-63. doi: 10.1109/JRFID.2021.3106664
    [24] Dong Jiancheng, Shi Jin, Xu Kai. Compact wideband differential bandpass filter using coupled microstrip lines and capacitors[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(7): 444-446. doi: 10.1109/LMWC.2019.2917778
    [25] Huang Xiaolong, Zhang Xiuyin, Zhou Liang, et al. Low-loss self-packaged Ka-Band LTCC filter using artificial multimode SIW resonator[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2023, 70(2): 451-455.
    [26] Zhu Haoran, Wang Wentao. High selectivity millimeter-wave on-chip band-pass filter with semi-lumped dual-mode resonator by using GaAs technology[J]. IEEE Electron Device Letters, 2023, 44(5): 729-732. doi: 10.1109/LED.2023.3254459
    [27] Xu Kaida, Xia Shengpei, Jiang Yannan, et al. Compact millimeter-wave on-chip dual-band bandpass filter in 0.15-μm GaAs technology[J]. IEEE Journal of the Electron Devices Society, 2022, 10: 152-156. doi: 10.1109/JEDS.2022.3143999
    [28] Shen Junyao, Fu Sulei, Su Rongxuan, et al. A low-loss wideband SAW filter with low drift using multilayered structure[J]. IEEE Electron Device Letters, 2022, 43(8): 1371-1374. doi: 10.1109/LED.2022.3185003
    [29] Panwar R, Lee J R. Progress in frequency selective surface-based smart electromagnetic structures: a critical review[J]. Aerospace Science and Technology, 2017, 66: 216-234. doi: 10.1016/j.ast.2017.03.006
    [30] Reis J R, Caldeirinha R F S, Hammoudeh A, et al. Electronically reconfigurable FSS-inspired transmitarray for 2-D beamsteering[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4880-4885. doi: 10.1109/TAP.2017.2723087
    [31] Tao Keya, Li Bo, Tang Yiming, et al. Analysis and implementation of 3D bandpass frequency selective structure with high frequency selectivity[J]. Electronics Letters, 2017, 53(5): 324-326. doi: 10.1049/el.2016.4469
    [32] Cross L W, Almalkawi M J, Devabhaktuni V K. Theory and demonstration of narrowband bent hairpin filters integrated with AC-coupled plasma limiter elements[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1100-1106. doi: 10.1109/TEMC.2013.2247403
    [33] Phudpong P, Hunter I C. Frequency-selective limiters using nonlinear bandstop filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(1): 157-164. doi: 10.1109/TMTT.2008.2009078
    [34] 胡飞. 滤波器自击穿效应及HPM防护应用[D]. 成都: 电子科技大学, 2021

    Hu Fei. The self-breakdown effect of filter and HPM protection application[D]. Chengdu: University of Electronic Science and Technology of China, 2021
    [35] 刘墨楠. 腔体滤波器高功率微波击穿特性研究[D]. 成都: 电子科技大学, 2019

    Liu Monan. Research on high power microwave breakdown characteristics of cavity filter[D]. Chengdu: University of Electronic Science and Technology of China, 2019
    [36] 刘培国, 万双林, 李高升, 等. 一种电磁能量选择表面: 101754668A[P]. 2009-12-31

    Liu Peiguo, Wan Shuanglin, Li Gaosheng, et al. Electromagnetic energy selection surface: 101754668A[P]. 2009-12-31
    [37] 毋召锋, 徐延林, 刘培国. 超宽带强电磁防护能量选择表面设计[J]. 国防科技大学学报, 2023, 45(3):179-185

    Wu Zhaofeng, Xu Yanlin, Liu Peiguo. Design of ultra-wideband energy selective surface for protection of high intensity EM fields[J]. Journal of National University of Defense Technology, 2023, 45(3): 179-185
    [38] Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. An ultra-broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5865-5873. doi: 10.1109/TAP.2023.3276447
    [39] Wu Zhaofeng, Liu Peiguo, Deng Bowen, et al. An ultrabroadband energy selective surface with nonreciprocal performance for HIRF protection[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(4): 1202-1210. doi: 10.1109/TEMC.2023.3268271
    [40] Tian Tao, Huang Xianjun, Cheng Kai, et al. Flexible and reconfigurable frequency selective surface with wide angular stability fabricated with additive manufacturing procedure[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2428-2432. doi: 10.1109/LAWP.2020.3034944
    [41] 万双林. 电磁能量选择表面的结构设计及其在强电磁脉冲防护中的应用分析[D]. 长沙: 国防科学技术大学, 2010

    Wan Shuanglin. The design of electromagnetic energy selective surfaces and its applications in high power EMP protection[D]. Changsha: National University of Defense Technology, 2010
    [42] 万双林, 刘培国, 何建国. 金属栅网对线极化电磁波的屏蔽效能研究[J]. 安全与电磁兼容, 2010(2):66-68

    Wan Shuanglin, Liu Peiguo, He Jianguo. Study on the shielding effectiveness of metal mesh to linear polarized electromagnetic wave[J]. Safety & EMC, 2010(2): 66-68
    [43] 杨成. 能量选择表面防护机理与分析[D]. 长沙: 国防科学技术大学, 2011

    Yang Cheng. Energy selective surface protection mechanism and analysis[D]. Changsha: National University of Defense Technology, 2011
    [44] Goncalves B M F, Afonso M M, Coppoli E H R, et al. Periodic boundary conditions in the natural element method[J]. IEEE Transactions on Magnetics, 2016, 52(3): 1-4.
    [45] Yang Cheng, Wendt T, De Stefano M, et al. Analysis and optimization of nonlinear diode grids for shielding of enclosures with apertures[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(6): 1884-1895. doi: 10.1109/TEMC.2021.3073106
    [46] Hu Ning, Zhao Yuting, Zhang Jihong, et al. High-performance energy selective surface based on equivalent circuit design approach[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4526-4538. doi: 10.1109/TAP.2021.3137293
    [47] 刘晨曦. 能量选择表面设计与仿真[D]. 长沙: 国防科学技术大学, 2015

    Liu Chenxi. Design and simulation of energy selective surface[D]. Changsha: National University of Defense Technology, 2015
    [48] Yang Cheng, Liu Peiguo, Huang Xianjun. A novel method of energy selective surface for adaptive HPM/EMP protection[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 112-115. doi: 10.1109/LAWP.2013.2243105
    [49] 张龙, 魏光辉, 胡小锋, 等. 能量选择表面材料防护性能研究[J]. 北京理工大学学报, 2013, 33(11):1165-1170

    Zhang Long, Wei Guanghui, Hu Xiaofeng, et al. Protection ability analysis on energy selective surface[J]. Transactions of Beijing Institute of Technology, 2013, 33(11): 1165-1170
    [50] Chen Zhenzhen, Chen Xing, Xu Guanghui. A spatial power limiter using a nonlinear frequency selective surface[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2018, 28: e21205. doi: 10.1002/mmce.21205
    [51] Zhou Lin, Liu Liangliang, Shen Zhongxiang. High-performance energy selective surface based on the double-resonance concept[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7658-7666. doi: 10.1109/TAP.2021.3075548
    [52] Zhao Chen, Wang Chaofu, Aditya S, et al. Power-dependent frequency-selective surface: concept, design, and experiment[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3215-3220. doi: 10.1109/TAP.2019.2900408
    [53] Deng Feng, Xi Xiujuan, Li Jing, et al. A method of designing a field-controlled active frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 630-633. doi: 10.1109/LAWP.2014.2375376
    [54] 吴欢成, 胡进光, 钟龙权, 等. 电磁能量选择表面的场路协同仿真与实验研究[J]. 强激光与粒子束, 2017, 29:093203 doi: 10.11884/HPLPB201729.170088

    Wu Huancheng, Hu Jinguang, Zhong Longquan, et al. Field-circuit co-simulation and experiment of electromagnetic energy selective surface[J]. High Power Laser and Particle Beams, 2017, 29: 093203 doi: 10.11884/HPLPB201729.170088
    [55] 高扬, 陈新伟. 一种新型电磁能量选择表面结构设计与仿真分析[J]. 测试技术学报, 2021, 35(1):79-83 doi: 10.3969/j.issn.1671-7449.2021.01.014

    Gao Yang, Chen Xinwei. Structure design and simulation analysis of a novel electromagnetic energy selective surface[J]. Journal of Test and Measurement Technology, 2021, 35(1): 79-83 doi: 10.3969/j.issn.1671-7449.2021.01.014
    [56] Wu Zhaofeng, Liu Peiguo, Lin Mingtuan, et al. A microwave field-induced nonlinear metamaterial with wafer integration level[J]. ACS Applied Materials & Interfaces, 2023, 15(12): 16189-16197.
    [57] 周奇辉. 能量选择表面研究与天线一体化设计分析[D]. 长沙: 国防科学技术大学, 2016

    Zhou Qihui. Research on energy selective surface and analysis of antenna integrated design[D]. Changsha: National University of Defense Technology, 2016
    [58] 王轲. 能量选择结构设计与导航防护应用研究[D]. 长沙: 国防科学技术大学, 2017

    Wang Ke. Research on energy selective structure design and navigation protection application[D]. Changsha: National University of Defense Technology, 2017
    [59] 易波, 李丽英, 陈紫琪. 加载能量选择表面的导航天线强电磁辐照响应研究[J]. 舰船电子对抗, 2022, 45(6):95-99

    Yi Bo, Li Liying, Chen Ziqi. Research into strong electromagnetic radiation response of navigation antenna with loaded energy selective surface[J]. Shipboard Electronic Countermeasure, 2022, 45(6): 95-99
    [60] Deng Boweng, Lin Mingtuan, Zhang Jihong, et al. PIN-diode-based high-intensity radiation fields (HIRF) protection of a printed dipole antenna[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(1): 198-205. doi: 10.1109/TEMC.2020.3020882
    [61] Zhang Jihong, Hu Ning, Wu Zhaofeng, et al. Adaptive high-impedance surface for prevention of waveguide's high-intensity wave[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7679-7687. doi: 10.1109/TAP.2021.3070052
    [62] Zhang Jihong, Lin Mingtuan, Wu Zhaofeng, et al. Energy selective surface with power-dependent transmission coefficient for high-power microwave protection in waveguide[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2494-2502. doi: 10.1109/TAP.2019.2894274
    [63] Kaushal A, Singh V. Excellent electromagnetic interference shielding performance of polypropylene/carbon fiber/multiwalled carbon nanotube nanocomposites[J]. Polymer Composites, 2022, 43(6): 3708-3715. doi: 10.1002/pc.26649
    [64] Gill N, Gupta V, Tomar M, et al. Improved electromagnetic shielding behaviour of graphene encapsulated polypyrrole-graphene nanocomposite in X-band[J]. Composites Science and Technology, 2020, 192: 108113. doi: 10.1016/j.compscitech.2020.108113
    [65] Fan Xun, Gao Qiang, Zhang Yu, et al. Anisotropic microcellular epoxy/rGO-SCF aerogel foam with excellent compressibility and superior electromagnetic interference shielding performance[J]. Composites Science and Technology, 2022, 230: 109718. doi: 10.1016/j.compscitech.2022.109718
    [66] Qin Feng, Yan Zhiyang, Fan Jinfeng, et al. Highly uniform and stable transparent electromagnetic interference shielding film based on silver nanowire-PEDOT: PSS composite for high power microwave shielding[J]. Macromolecular Materials and Engineering, 2021, 306: 2000607. doi: 10.1002/mame.202000607
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  135
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-27
  • 修回日期:  2024-01-10
  • 录用日期:  2024-01-10
  • 网络出版日期:  2024-01-22
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回