留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大视场龙伯透镜电磁成像超分辨算法

杨美玲 谢树果 张申达 冯荣光 杨燕

杨美玲, 谢树果, 张申达, 等. 大视场龙伯透镜电磁成像超分辨算法[J]. 强激光与粒子束, 2024, 36: 043017. doi: 10.11884/HPLPB202436.230383
引用本文: 杨美玲, 谢树果, 张申达, 等. 大视场龙伯透镜电磁成像超分辨算法[J]. 强激光与粒子束, 2024, 36: 043017. doi: 10.11884/HPLPB202436.230383
Yang Meiling, Xie Shuguo, Zhang Shenda, et al. Large field-of-view Luneburg lens electromagnetic imaging super-resolution research[J]. High Power Laser and Particle Beams, 2024, 36: 043017. doi: 10.11884/HPLPB202436.230383
Citation: Yang Meiling, Xie Shuguo, Zhang Shenda, et al. Large field-of-view Luneburg lens electromagnetic imaging super-resolution research[J]. High Power Laser and Particle Beams, 2024, 36: 043017. doi: 10.11884/HPLPB202436.230383

大视场龙伯透镜电磁成像超分辨算法

doi: 10.11884/HPLPB202436.230383
基金项目: 国家自然科学基金项目(62202030)
详细信息
    作者简介:

    杨美玲,meiling.yang@buaa.edu.cn

  • 中图分类号: TP391

Large field-of-view Luneburg lens electromagnetic imaging super-resolution research

  • 摘要: 现有的反射面电磁成像系统体积庞大,无法满足机载、车载、无人机等应用平台要求。针对此类问题,研究了龙伯透镜的结构特性和成像特性,设计了大视场龙伯透镜电磁成像系统,利用空不变成像特性进行超分辨图像处理,实现了快速、大视场、宽频带、高分辨电磁辐射源分布成像。计算了口径300 mm带球核分层龙伯透镜参数,仿真了4~18 GHz龙伯透镜焦弧面场强分布,验证了龙伯透镜空不变的成像特性及其超分辨算法的有效性。实验对比了抛物反射面电磁成像系统和本文龙伯透镜电磁成像系统的体积、成像范围、源数目和分辨率,结果证明了本文系统的优越性,同样分辨率下,达到了方位角及俯仰角均为40°的大视场范围。
  • 图  1  分层龙伯透镜结构示意图

    Figure  1.  Schematic diagram of layered Luneburg lens

    图  2  不同频率下龙伯透镜焦弧面上的场强分布

    Figure  2.  E-field magnitude distribution on focal surface

    图  3  龙伯透镜的空不变成像特性

    Figure  3.  Spactial invariance property of Luneburg lens imaging

    图  4  2源8 GHz超分辨重建仿真

    Figure  4.  8 GHz super resolution of 2 RF sources

    图  5  宽带大视场电磁成像系统样机

    Figure  5.  Prototype of wideband large field-of-view (FOV) electromagnetic imaging system

    图  6  3源超分辨重建试验

    Figure  6.  Super-resolution experiment of 3 RF sources

    图  7  多源系统成像

    Figure  7.  Multiple RF sources imaging

  • [1] Kodali V P. Engineering electromagnetic compatibility: principles, measurements, technologies, and computer models[M]. Piscataway: IEEE Press, 2001.
    [2] 李改有. 复杂电磁环境下辐射源自适应跟踪与信息融合研究[D]. 成都: 电子科技大学, 2022

    Li Gaiyou. Research on adaptive tracking and information fusion of emitters in complex electromagnetic environment[D]. Chengdu: University of Electronic Science and Technology of China, 2022
    [3] 陈昭. 超宽带接收机的研究与设计[D]. 成都: 电子科技大学, 2023

    Chen Zhao. Research and design of UWB receiver[D]. Chengdu: University of Electronic Science and Technology of China, 2023
    [4] Xie Shuguo, Wang Tianheng, Hao Xuchun et al. Localization and frequency identification of large-range wide-band electromagnetic interference sources in electromagnetic imaging system[J]. Electronics, 2019, 8: 499. doi: 10.3390/electronics8050499
    [5] Yang Yan, Xie Shuguo, Dong Yakai et al. A frequency recovering method for photonic under-sampling E-field measurement[J]. IEEE Sensors Journal, 2021, 21(12): 13495-13505. doi: 10.1109/JSEN.2021.3068003
    [6] 杜鑫, 谢树果, 郝旭春, 等. 一种电磁干扰源成像多分辨率分区算法[J]. 强激光与粒子束, 2015, 27:103223 doi: 10.11884/HPLPB201527.103223

    Du Xin, Xie Shuguo, Hao Xuchun, et al. An electromagnetic interference source imaging algorithm of multi-resolution partitions[J]. High Power Laser and Particle Beams, 2015, 27: 103223 doi: 10.11884/HPLPB201527.103223
    [7] Niu Lijie, Liu Hao, Wu Lin, et al. Experimental study of an L-band synthetic aperture radiometer for ocean salinity measurement[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. 2016: 418-421.
    [8] 赵岚. 毫米波凝视成像机理研究[D]. 合肥: 中国科学技术大学, 2009

    Zhao Lan. Study on mechanism of millimeter-wave staring imaging[D]. Hefei: University of Science and Technology of China, 2009
    [9] 李先进. 伦伯透镜天线概述[C]//第六届卫星通信新业务新技术学术年会论文集. 2010: 444-450

    Li Xianjin. Overview of Luneberg lens antenna[C]//Proceedings of the 6th Annual Conference on New Services and Technologies of Satellite Communication. 2010: 444-450
    [10] 王熙. 毫米波多波束龙伯透镜天线与高增益透射阵天线的研究[D]. 成都: 电子科技大学, 2023

    Wang Xi. Research on millimeter-wave multi-beam Luneburg lens antennas and high-gain transmitaray antennas[D]. Chengdu: University of Electronic Science and Technology of China, 2023
    [11] Luneberg R K. Mathematical theory of optics[M]. Providence: Brown University Press, 1944.
    [12] Zhao Liwei, Wu Yafei, Wang Cong, et al. A 3-D-printed deployable Luneburg lens antenna based on the pop-up kirigami sphere[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(8): 6481-6489. doi: 10.1109/TAP.2023.3288548
    [13] Peeler G, Coleman H. Microwave stepped-index luneberg lenses[J]. IRE Transactions on Antennas and Propagation, 1958, 6(2): 202-207. doi: 10.1109/TAP.1958.1144575
    [14] Sanford J R. Scattering by spherically stratified microwave lens antennas[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(5): 690-698. doi: 10.1109/8.299568
    [15] Yang Meiling, Xie Shuguo, Zhang Shenda, et al. Space-frequency domain non-blind method for wideband electromagnetic imaging restoration[C]//Proceedings of 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium. 2021: 1-2.
    [16] Xie Shuguo, Luan Shenshen, Wang Tianheng, et al. Frequency estimation method for wideband microwave camera[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(10): 6838-6847. doi: 10.1109/TAP.2021.3070190
  • 加载中
图(7)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  31
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-30
  • 修回日期:  2024-01-05
  • 录用日期:  2024-01-13
  • 网络出版日期:  2024-03-18
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回