留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间热离子反应堆燃料元件力学性能分析程序开发

杨文宇 柴翔 朱恩平 刘晓晶

杨文宇, 柴翔, 朱恩平, 等. 空间热离子反应堆燃料元件力学性能分析程序开发[J]. 强激光与粒子束, 2024, 36: 036001. doi: 10.11884/HPLPB202436.230388
引用本文: 杨文宇, 柴翔, 朱恩平, 等. 空间热离子反应堆燃料元件力学性能分析程序开发[J]. 强激光与粒子束, 2024, 36: 036001. doi: 10.11884/HPLPB202436.230388
Yang Wenyu, Chai Xiang, Zhu Enping, et al. Development of mechanical property analysis program for space thermionic fuel element[J]. High Power Laser and Particle Beams, 2024, 36: 036001. doi: 10.11884/HPLPB202436.230388
Citation: Yang Wenyu, Chai Xiang, Zhu Enping, et al. Development of mechanical property analysis program for space thermionic fuel element[J]. High Power Laser and Particle Beams, 2024, 36: 036001. doi: 10.11884/HPLPB202436.230388

空间热离子反应堆燃料元件力学性能分析程序开发

doi: 10.11884/HPLPB202436.230388
基金项目: 国家重点研发计划项目(2020YFB1901900);国家自然科学基金项目(12275175);上海市工业强基计划项目(GYQJ-2018-2-02);上海市启明星计划项目(21QA1404200)
详细信息
    作者简介:

    杨文宇,945852939@qq.com

    通讯作者:

    柴 翔,xiangchai@sjtu.edu.cn

  • 中图分类号: TL349

Development of mechanical property analysis program for space thermionic fuel element

  • 摘要: 为了实现对空间热离子反应堆燃料元件运行期间安全性能的预测,研究开发了一种燃料元件力学性能分析程序,并针对多层圆筒状的TOPAZ-Ⅱ热离子燃料元件开展了应力、应变和几何变形的高精度模拟。程序考虑了核燃料在高温辐照环境下的辐照肿胀,并分析了燃料芯块-发射极在发生接触后的力学响应问题,从而快速且准确地求解燃料芯块和发射极的力学状态,以对空间热离子反应堆运行期间的性能提供准确预测。结果表明:在正常运行情况下,空间热离子反应堆燃料会发生显著的肿胀效应,其造成的变形将导致燃料元件热电转换效率降低、元件失效等安全隐患。
  • 图  1  程序总体运行流程和主要模块

    Figure  1.  Overall operating process and main modules of the program

    图  2  热离子燃料元件径向截面图

    Figure  2.  Radial sectional view of the thermionic fuel element

    图  3  力学求解模块的计算流程

    Figure  3.  Calculation process of the mechanical solution module

    图  4  晶粒内气态膨胀的实验-模拟对比

    Figure  4.  Experimental-simulation comparison of intra-granular gaseous swelling

    图  5  晶粒间气态膨胀的实验-模拟对比

    Figure  5.  Experimental-simulation comparison of inter-granular gaseous swelling

    图  6  弹性应力分布对比

    Figure  6.  Comparison of the elastic stress distribution

    图  7  热应力分布对比

    Figure  7.  Comparison of the thermal stress distribution

    图  8  燃料元件径向尺寸随运行时间的变化

    Figure  8.  Variation of fuel elements radial size with operation time

    图  9  燃料芯块应变随运行时间的变化

    Figure  9.  Variation of fuel pellet strain with operation time

    图  10  燃料芯块的变形情况

    Figure  10.  Deformation of the fuel pellet

    图  11  发射极的变形情况

    Figure  11.  Deformation of the emitter

    图  12  发生接触后接触应力和燃料芯块的外表面移动速率

    Figure  12.  Contact pressure and outer surface movement rate of fuel pellet after contact

    图  13  接触后发射极等效应力随时间的变化

    Figure  13.  Variation of equivalent stress of emitter with operation time after contact

    表  1  模型相关系数

    Table  1.   Constants of the model

    ${K_1}/{{\text{K}}^{-{{1}}}}$ ${K_2}$ ${K_3}$ ${E_D}{\text{/J}}$
    $9.80 \times {10^{ - 6}}$ $2.61 \times {10^{ - 3}}$ $3.16 \times {10^{ - 1}}$ $1.32 \times {10^{ - 19}}$
    下载: 导出CSV

    表  2  算例的主要参数

    Table  2.   Main parameters of the case

    elastic
    modulus/GPa
    Poisson’s
    ratio
    outer diameter of
    cylinder/mm
    inner diameter of
    cylinder/mm
    external surface
    pressure/MPa
    internal surface
    pressure/MPa
    197 0.3 6 5.4 0.101 0.028
    下载: 导出CSV
  • [1] Cameron G, Reynolds E. Integration of the Topaz 2 space nuclear reactor with the NEPSTP spacecraft[C]//Proceedings of the Intersociety Energy Conversion Engineering Conference. 1994: 3817.
    [2] Thurman J L. Optimization of steady-state thermal design of space radiators[J]. Journal of Spacecraft and Rockets, 1969, 6(10): 1114-1119. doi: 10.2514/3.29773
    [3] Bellucci A, Girolami M, Trucchi D M. Thermionic and thermoelectric energy conversion[M]//Datas A. Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion. Duxford: Woodhead Publishing, 2021: 253-284.
    [4] Pastore G, Pizzocri D, Rabiti C, et al. An effective numerical algorithm for intra-granular fission gas release during non-equilibrium trapping and resolution[J]. Journal of Nuclear Materials, 2018, 509: 687-699. doi: 10.1016/j.jnucmat.2018.07.030
    [5] Olander D R, Wongsawaeng D. Re-solution of fission gas–A review: Part I. Intragranular bubbles[J]. Journal of Nuclear Materials, 2006, 354(1/3): 94-109.
    [6] Pastore G, Luzzi L, Di Marcello V, et al. Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis[J]. Nuclear Engineering and Design, 2013, 256: 75-86. doi: 10.1016/j.nucengdes.2012.12.002
    [7] Hagrman D L, Reymann G A. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior[R]. Idaho Falls: Idaho National Lab. , 1979: 37-44.
    [8] Luscher W G, Geelhood K J. Material property correlations: comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO[R]. Richland: Pacific Northwest National Lab. , 2010: 42-53.
    [9] 薛守义. 弹塑性力学[M]. 北京: 中国建材工业出版社, 2005: 25-30

    Xue Shouyi. Theory of elasticity and plasticity[M]. Beijing: China Building Materials Press, 2005: 25-30
    [10] Karahan A. Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors[D]. Cambridge: Massachusetts Institute of Technology, 2009: 99-103.
    [11] Deng Yangbin, Wu Yingwei, Gong Cheng, et al. Upgrade of FROBA code and its application in thermal-mechanical analysis of space reactor fuel[J]. Nuclear Engineering and Design, 2018, 332: 297-306. doi: 10.1016/j.nucengdes.2018.03.041
    [12] Baker C. The fission gas bubble distribution in uranium dioxide from high temperature irradiated sghwr fuel pins[J]. Journal of Nuclear Materials, 1977, 66(3): 283-291. doi: 10.1016/0022-3115(77)90117-9
    [13] White R J. The development of grain-face porosity in irradiated oxide fuel[J]. Journal of Nuclear Materials, 2004, 325(1): 61-77. doi: 10.1016/j.jnucmat.2003.10.008
    [14] 朱滨. 弹性力学[M]. 合肥: 中国科学技术大学出版社, 2008: 148-151

    Zhu Bin. Elasticity[M]. Hefei: University of Science and Technology of China Press, 2008: 148-151
    [15] 张系斌. 圆柱筒的应力与变形分析[J]. 工程力学, 2000(s1):456-460

    Zhang Xibin. Stress and deformation analysis of cylindrical tubes[J]. Engineering Mechanics, 2000(s1): 456-460
    [16] Valentini B, Leuprecht C, Plankensteiner A, et al. Finite element analysis of the high-temperature creep deformation of a TZM heavy duty charge carrier[J]. International Journal of Refractory Metals and Hard Materials, 2015, 53: 104-110. doi: 10.1016/j.ijrmhm.2015.05.015
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  27
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2024-01-23
  • 录用日期:  2024-01-23
  • 网络出版日期:  2024-01-29
  • 刊出日期:  2024-03-15

目录

    /

    返回文章
    返回