留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种束半径可调的环形强流电子束产生技术及应用

周富贵 张点 张军 陈英豪 靳振兴 周生岳

周富贵, 张点, 张军, 等. 一种束半径可调的环形强流电子束产生技术及应用[J]. 强激光与粒子束, 2024, 36: 033009. doi: 10.11884/HPLPB202436.230394
引用本文: 周富贵, 张点, 张军, 等. 一种束半径可调的环形强流电子束产生技术及应用[J]. 强激光与粒子束, 2024, 36: 033009. doi: 10.11884/HPLPB202436.230394
Zhou Fugui, Zhang Dian, Zhang Jun, et al. A technology for generating intense annular electron beam with variable beam radius and its application[J]. High Power Laser and Particle Beams, 2024, 36: 033009. doi: 10.11884/HPLPB202436.230394
Citation: Zhou Fugui, Zhang Dian, Zhang Jun, et al. A technology for generating intense annular electron beam with variable beam radius and its application[J]. High Power Laser and Particle Beams, 2024, 36: 033009. doi: 10.11884/HPLPB202436.230394

一种束半径可调的环形强流电子束产生技术及应用

doi: 10.11884/HPLPB202436.230394
详细信息
    作者简介:

    周富贵,zfg1446101359@163.com

    通讯作者:

    张 点,zhangdian@nudt.edu.cn

  • 中图分类号: TN125

A technology for generating intense annular electron beam with variable beam radius and its application

  • 摘要: 束半径可调的强流环形电子束在跨波段跳频高功率微波产生器件中有重要应用。提出了一种改变外加引导磁场位形从而改变环形强流电子束半径的技术。该技术的核心部件由环形阴极、阳极、电子束转移通道、电子束传输通道和三段螺线管组成。当三段螺线管的通流的电流大小不一样时,该螺线管系统就能产生不同位形的磁场。在粒子模拟中,当三段螺线管的通流电流大小分别为1025 A、107 A、107 A和300 A、300 A、0 A时,螺线管产生两种不同位形的磁场,实现电子束半径的改变。从单粒子运动理论出发,本文推导出电子束在梯度磁场引导下的运动轨迹表达式,解释了电子束半径在梯度磁场下变化的原理,还研究了梯度磁场的斜率和极差对电子束轨迹的影响。在跨波段器件仿真中,X波段输出功率为1.6 GW,频率为8.2 GHz,效率为40%;Ku波段输出功率为1.5 GW,频率为14.4 GHz,效率为38%。
  • 图  1  电子束半径可调二极管示意图

    Figure  1.  Schematic of a diode with adjustable beam radius

    图  2  梯度轴向磁场示意图

    Figure  2.  Diagram of the gradient axial magnetic field

    图  3  电子束轨迹示意图

    Figure  3.  Diagram of electron beam trajectory

    图  4  不同斜率的轴向磁场和在该磁场引导下的电子束轨迹

    Figure  4.  Diagram of axial magnetic field with different slopes and electron beam trajectory guided by the magnetic field

    图  5  不同峰值的轴向磁场和在该磁场引导下的电子束轨迹

    Figure  5.  Axial magnetic field with different peaks and electron beam trajectory guided by the magnetic field

    图  6  跨波段跳频HPM振荡器示意图

    Figure  6.  Diagram of a cross-band frequency-modulated HPM oscillator

    图  7  反射器结构示意图

    Figure  7.  Diagram of a reflector

    图  8  TEM模式的S参数

    Figure  8.  S-Parameter of TEM mode

    图  9  X波段峰值功率和平均功率图

    Figure  9.  X-band peak power and average power diagram

    图  12  Ku波段频谱图

    Figure  12.  Ku-band spectrum diagram

    图  10  X波段频谱图

    Figure  10.  X-band spectrum diagram

    图  11  Ku波段峰值功率和平均功率图

    Figure  11.  Ku-band peak power and average power diagram

    图  13  螺线管电流对X波段TTO功率效率影响图

    Figure  13.  Effect of solenoid current on power efficiency of X-band TTO

    表  1  电调节变半径二极管参数

    Table  1.   Parameters of electrically regulated variable-radius diode (mm)

    Ra Rc RX WX Lac Lt RKu
    48 28 54.5 12 22 14 31.5
    下载: 导出CSV

    表  2  螺线管绕制参数

    Table  2.   Solenoid parameters

    order lateral turns axial turns lateral extra turns axial extra turns
    1 10 25 5 10
    2 10 51 5 10
    3 13 30 7 10
    下载: 导出CSV

    表  3  反射器的结构参数

    Table  3.   Structural parameters of the reflector (mm)

    Wb Lup Ldn Dup Ddn Rb
    12 4 11 11 6.5 54.5
    下载: 导出CSV
  • [1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2015: 466.
    [2] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. Boca Raton: CRC Press, 2007.
    [3] Zhou Fugui, Zhang Dian, Zhang Jun, et al. A novel cross-band frequency hopping gigawatts class high-power microwave oscillator[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 7079-7082. doi: 10.1109/TED.2022.3218493
    [4] Zhou Fugui, Zhang Dian, Zhang Jun, et al. Design of a cross-band frequency hopping high power microwave oscillator with permanent magnet package[J]. Physics of Plasmas, 2023, 30: 103504. doi: 10.1063/5.0167193
    [5] Gao Xingfu, Song Lili, He Juntao, et al. A novel dual-band nested transit time oscillator[J]. AIP Advances, 2021, 11: 095215. doi: 10.1063/5.0062112
    [6] Zhang Jun, Zhang Dian, Fan Yuwei, et al. Progress in narrowband high-power microwave sources[J]. Physics of Plasmas, 2020, 27: 010501. doi: 10.1063/1.5126271
    [7] Zhang Peng, Ge Xingjun, Dang Fangchao, et al. A high-efficiency dual-band relativistic Cerenkov oscillator based on dual electron beams[J]. Physics of Plasmas, 2019, 26: 103501. doi: 10.1063/1.5115516
    [8] Wang Ting, Zhang Jiande, Qian Baoliang, et al. Dual-band relativistic backward wave oscillators based on a single beam and dual beams[J]. Physics of Plasmas, 2010, 17: 043107. doi: 10.1063/1.3368864
    [9] Wang Ting, Qian Baoliang, Zhang Jiande, et al. Preliminary experimental investigation of a dual-band relativistic backward wave oscillator with dual beams[J]. Physics of Plasmas, 2011, 18: 013107. doi: 10.1063/1.3537818
    [10] Zhang Qiang, Yuan Chengwei, Liu Lie. A dual-band coaxial waveguide mode converter for high-power microwave applications[J]. Chinese Physics Letters, 2011, 28: 068401. doi: 10.1088/0256-307X/28/6/068401
    [11] 刘锡三. 强流粒子束及其应用[M]. 北京: 国防工业出版社, 2007

    Liu Xisan. Intense particle beams and its applications[M]. Beijing: National Defense Industry Press, 2007
    [12] 徐启福. 强流二极管中等离子体特性的研究[D]. 长沙: 国防科学技术大学, 2012

    Xu Qifu. Characteristics of plasma in high-current electron beam diode[D]. Changsha: National University of Defense Technology, 2012
    [13] 罗志成. 强流二极管阴阳极等离子体特性及其对相对论返波振荡器影响研究[D]. 长沙: 国防科技大学, 2019

    Luo Zhicheng. Cathode and anode plasma research of intense diode and influence on relativistic backward wave oscillator[D]. Changsha: National University of Defense Technology, 2019
    [14] 杨建华, 张亚洲, 舒挺, 等. 强流相对论环形电子束在低磁场中传输分析[J]. 强激光与粒子束, 2005, 17(3):412-416

    Yang Jianhua, Zhang Yazhou, Shu Ting, et al. Analysis of intense relativistic electron beams transportation in low magnetic field[J]. High Power Laser and Particle Beams, 2005, 17(3): 412-416
    [15] Chen F F. 等离子体物理学导论[M]. 林光海, 译. 北京: 科学出版社, 2016

    Chen F F. Introduction to plasma physics[M]. Lin Guanghai, trans. Beijing: Science Press, 2016
    [16] 曹亦兵. 基于渡越辐射新型高功率微波源的研究[D]. 长沙: 国防科学技术大学, 2012

    Cao Yibing. Investigation of a novel high-power microwave source based on transition radiation effect[D]. Changsha: National University of Defense Technology, 2012
    [17] 陈思遥. V波段同轴Cerenkov型高功率微波振荡器研究[D]. 长沙: 国防科技大学, 2021

    Chen Siyao. Investigation on V-band coaxial Cerenkov high power microwave oscillator[D]. Changsha: National University of Defense Technology, 2021
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  45
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2024-01-28
  • 录用日期:  2024-01-29
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回