留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲放电破岩等离子体通道长度预测方法

刘毅 廖洪彬 程晋 李柳霞 林福昌 赵勇

刘毅, 廖洪彬, 程晋, 等. 脉冲放电破岩等离子体通道长度预测方法[J]. 强激光与粒子束, 2024, 36: 055021. doi: 10.11884/HPLPB202436.230432
引用本文: 刘毅, 廖洪彬, 程晋, 等. 脉冲放电破岩等离子体通道长度预测方法[J]. 强激光与粒子束, 2024, 36: 055021. doi: 10.11884/HPLPB202436.230432
Liu Yi, Liao Hongbin, Cheng Jin, et al. Method for predicting plasma channel length for rock breaking by pulsed discharge[J]. High Power Laser and Particle Beams, 2024, 36: 055021. doi: 10.11884/HPLPB202436.230432
Citation: Liu Yi, Liao Hongbin, Cheng Jin, et al. Method for predicting plasma channel length for rock breaking by pulsed discharge[J]. High Power Laser and Particle Beams, 2024, 36: 055021. doi: 10.11884/HPLPB202436.230432

脉冲放电破岩等离子体通道长度预测方法

doi: 10.11884/HPLPB202436.230432
基金项目: 国家自然科学基金项目(52177144)
详细信息
    作者简介:

    刘 毅,yiliu@hust.edu.cn

  • 中图分类号: TM89

Method for predicting plasma channel length for rock breaking by pulsed discharge

  • 摘要: 针对高压脉冲放电破岩电弧等离子体通道长度难以预测的问题,构建了高压脉冲放电破岩综合试验平台,测量了花岗岩-自来水组合介质下电弧等离子体通道发展特性及典型电流、电压参数,提取了不同电极间距和脉冲放电次数下岩石表面形成的破碎区域。基于能量平衡方程建立了岩石中电弧等离子体通道的阻抗模型,采用迭代优化算法获取阻抗模型参数的近似最优解,模型计算结果与试验结果的相对误差小于7%。基于优化参数,利用实测电流电压数据预测了等离子体通道的长度。模型预测的等离子体通道长度与实测值的绝对误差均处于毫米量级,且两者的相对误差小于10%,为高压脉冲放电破岩系统电源-电极负载的匹配设计提供了理论支撑。
  • 图  1  高压脉冲放电破岩综合试验平台

    Figure  1.  Comprehensive test platform for rock breaking by high voltage pulse discharge

    图  2  典型试验结果

    Figure  2.  Results of typical test

    图  3  破碎区域脱模结果

    Figure  3.  Demolding results of the crushing area

    图  4  高压脉冲放电破岩等效电气回路

    Figure  4.  Equivalent electrical circuit of high voltage pulse discharge rock breaking

    图  5  等离子体通道长度预测流程图

    Figure  5.  Flow chart of plasma channel length prediction

    图  6  破碎区域切面轮廓长度测量方法

    Figure  6.  Method for measuring the length of the section profile of the crushing area

    图  7  模型参数优化帕累托前沿

    Figure  7.  Pareto front of model parameter optimization

    图  8  试验数据与模型数据对比

    Figure  8.  Comparison between test data and model data

    图  9  等离子体通道长度预测帕累托前沿

    Figure  9.  Pareto front of plasma channel length prediction

    表  1  No.2破岩试验数据

    Table  1.   Data of rock breaking test No.2

    Iemax/kA Iemin/kA TIe/μs Vemax/kV Vemin/kV TVe/μs lch/cm
    13.258 −9.285 5.132 300.321 −46.507 5.144 3.380
    下载: 导出CSV

    表  2  最优解OS的取值

    Table  2.   The value of optomal solution

    ξ γ f εs r(0)/cm T(0)/K n(0)
    0.0039 1.1309 0.4228 1.7456×10−20 7.0717×10−6 1.7998×104 3.4254×1029
    下载: 导出CSV

    表  3  试验数据与模型数据误差

    Table  3.   Errors between test data and model data

    Imax/kA Imin/kA TI/μs Vmax/kV Vmin/kV TV/μs
    13.229(0.22%) −8.631(7.00%) 5.318(3.62%) 300.54(0.07%) −48.869(5.08%) 5.028(2.26%)
    下载: 导出CSV

    表  4  长度预测值与脱模结果对比

    Table  4.   Comparison of length between predicted values and results of demolding

    No. predicted
    value/cm
    length of section contour of
    last crushing area/cm
    length of section contour of
    the crushing area/cm
    average/cm error/%
    1 2.362 2.190 2.936 2.563 7.842
    4 5.194 5.107 5.222 5.164 0.581
    6 6.494 6.382 7.111 6.746 3.736
    7 7.736 7.061 7.407 7.234 6.939
    9 7.324 6.874 7.727 7.300 0.309
    下载: 导出CSV
  • [1] 张瑞强, 刘少军, 胡琼. 利用脉冲功率技术开采海底富钴结壳的试验研究[J]. 强激光与粒子束, 2017, 29:065008 doi: 10.11884/HPLPB201729.170048

    Zhang Ruiqiang, Liu Shaojun, Hu Qiong. Experimental investigation of exploring marine co-rich crust using pulse power techniques[J]. High Power Laser and Particle Beams, 2017, 29: 065008 doi: 10.11884/HPLPB201729.170048
    [2] 吴敏干, 刘毅, 林福昌, 等. 液电脉冲激波特性分析[J]. 强激光与粒子束, 2020, 32:045002

    Wu Min’gan, Liu Yi, Lin Fuchang, et al. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32: 045002
    [3] 付荣耀, 周健, 孙鹞鸿, 等. 无围压下高电压脉冲放电在岩石压裂中的应用[J]. 高电压技术, 2015, 41(12):4055-4059

    Fu Rongyao, Zhou Jian, Sun Yaohong, et al. Application of high voltage pulse discharge in rock fracturing without confining pressure[J]. High Voltage Engineering, 2015, 41(12): 4055-4059
    [4] Wang Xiaodong, Li Ningjing, Du Jiaxu, et al. Concrete crushing based on the high-voltage pulse discharge technology[J]. Journal of Building Engineering, 2021, 41: 102366. doi: 10.1016/j.jobe.2021.102366
    [5] Huang Shijie, Liu Yi, Zhao Yong, et al. Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model[J]. Plasma Science and Technology, 2023, 25: 065502. doi: 10.1088/2058-6272/acb136
    [6] Zhao Yong, Liu Yi, Xiong Liangli, et al. Dynamic damage characteristics of rock under multiple loads during high-voltage pulse fragmentation[J]. Journal of Applied Physics, 2022, 132: 104901. doi: 10.1063/5.0100904
    [7] Walsh S D C, Vogler D. Simulating electropulse fracture of granitic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 104238. doi: 10.1016/j.ijrmms.2020.104238
    [8] Biela J, Marxgut C, Bortis D, et al. Solid state modulator for plasma channel drilling[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1093-1099. doi: 10.1109/TDEI.2009.5211860
    [9] Lisitsyn I V, Inoue H, Nishizawa I, et al. Breakdown and destruction of heterogeneous solid dielectrics by high voltage pulses[J]. Journal of Applied Physics, 1998, 84(11): 6262-6267. doi: 10.1063/1.368946
    [10] Ushakov V Y, Vajov V F, Zinoviev N T. Electro-discharge technology for drilling wells and concrete destruction[M]. Cham: Springer, 2019.
    [11] Ezzat M, Vogler D, Saar M O, et al. Simulating plasma formation in pores under short electric pulses for Plasma Pulse Geo Drilling (PPGD)[J]. Energies, 2021, 14: 4717. doi: 10.3390/en14164717
    [12] 杨扬, 李昌平, 丁华锋. 高压脉冲破岩放电回路建模及参数辨识[J]. 机械工程学报, 2022, 58(15):243-251 doi: 10.3901/JME.2022.15.243

    Yang Yang, Li Changping, Ding Huafeng. Modeling and parameter identification of high voltage pulse rock-breaking discharge circuit[J]. Journal of Mechanical Engineering, 2022, 58(15): 243-251 doi: 10.3901/JME.2022.15.243
    [13] Zhu Xiaohua, Chen Mengqiu, Liu Weiji, et al. The fragmentation mechanism of heterogeneous granite by high-voltage electrical pulses[J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 4351-4372. doi: 10.1007/s00603-022-02874-z
    [14] Braginskii S I. Theory of the development of a spark channel[J]. Soviet Physics JETP, 1958, 34(6): 1068-1074.
    [15] Li Changping, Duan Longchen, Tan Songcheng, et al. An electro breakdown damage model for granite and simulation of deep drilling by high-voltage electropulse boring[J]. Shock and Vibration, 2019, 2019: 7149680.
    [16] 徐尤来, 刘毅, 黄仕杰, 等. 高电压脉冲放电破岩系统建模分析[J]. 真空科学与技术学报, 2023, 43(4):298-304

    Xu Youlai, Liu Yi, Huang Shijie, et al. Simulation of high voltage pulse rock breaking system[J]. Chinese Journal of Vacuum Science and Technology, 2023, 43(4): 298-304
    [17] 黄仕杰, 刘毅, 林福昌, 等. 高压脉冲放电破岩电弧阻抗特性分析[J]. 电工技术学报, 2022, 37(19):4978-4988

    Huang Shijie, Liu Yi, Lin Fuchang, et al. Analysis of arc impedance characteristics in high-voltage electric pulse discharge rock destruction[J]. Transactions of China Electrotechnical Society, 2022, 37(19): 4978-4988
    [18] Kratel A W H. Pulsed power discharges in water[D]. Pasadena: California Institute of Technology, 1996.
    [19] 李寿哲. 大气压微波等离子体炬的开发和发射光谱诊断[J]. 高电压技术, 2019, 45(11):3730-3735

    Li Shouzhe. Development and optical emission diagnosis of atmospheric-pressure microwave plasma torch[J]. High Voltage Engineering, 2019, 45(11): 3730-3735
    [20] 葛继科, 邱玉辉, 吴春明, 等. 遗传算法研究综述[J]. 计算机应用研究, 2008, 25(10):2911-2916

    Ge Jike, Qiu Yuhui, Wu Chunming, et al. Summary of genetic algorithms research[J]. Application Research of Computers, 2008, 25(10): 2911-2916
    [21] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [22] Verma S, Pant M, Snasel V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems[J]. IEEE Access, 2021, 9: 57757-57791. doi: 10.1109/ACCESS.2021.3070634
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  26
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-02-19
  • 录用日期:  2024-02-23
  • 网络出版日期:  2024-02-29
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回