留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率小型化波导E面异频功率合成器的设计

苏奕宇 李相强 魏溢宏 张健穹 王庆峰

苏奕宇, 李相强, 魏溢宏, 等. 高功率小型化波导E面异频功率合成器的设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230433
引用本文: 苏奕宇, 李相强, 魏溢宏, 等. 高功率小型化波导E面异频功率合成器的设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230433
Su Yiyu, Li Xiangqiang, Wei Yihong, et al. Design of a high-power miniaturized waveguide E-plane heterodyne power combiner[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230433
Citation: Su Yiyu, Li Xiangqiang, Wei Yihong, et al. Design of a high-power miniaturized waveguide E-plane heterodyne power combiner[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230433

高功率小型化波导E面异频功率合成器的设计

doi: 10.11884/HPLPB202436.230433
基金项目: 四川省科技厅重点研发项目(2022YFG0248)
详细信息
    作者简介:

    苏奕宇,845402954@qq.com

    通讯作者:

    李相强,xiangqiang_li@163.com

  • 中图分类号: TN82

Design of a high-power miniaturized waveguide E-plane heterodyne power combiner

  • 摘要: 为了满足典型应用场景对高功率异频功率合成器提出的输入输出同向及结构紧凑的需求,提出并设计了一种工作在9.3 GHz和9.7 GHz频率的高功率小型化波导E面异频功率合成器。基于滤波器结构异频功率合成器的原理,通过采用过模矩形波导E面合成的形式,使两个波导滤波器相互平行,两个输入端口相互平齐,以满足特定应用场景的需求。同时,通过减小合成环节的矩形波导尺寸对合成过程中产生的高次模进行抑制,并按照半个波导波长的整数倍减小波导滤波器模片间距,在保证具有高功率容量的前提下缩短了滤波器长度。设计的异频功率合成器整体长度为9.2 λ,宽度为1.5 λ,高度为2.8 λ(λ为9.5 GHz所对应的自由空间波长)。仿真结果表明,该合成器在9.3 GHz和9.7 GHz频率下的回波损耗均大于20 dB,合成效率大于98%,输入端口之间的隔离度大于20 dB,在80 MV/m微波脉冲击穿阈值下,功率容量为310 MW。
  • 图  1  高功率小型化异频功率合成器结构示意图

    Figure  1.  Schematic structure of high power miniaturized heterodyne power combiner

    图  2  滤波器等效集总参数电路模型

    Figure  2.  Equivalent lumped parameter circuit model of filters

    图  3  波导滤波器结构示意图

    Figure  3.  Schematic structure of the waveguide filter

    图  4  异频功率合成器的输出信号波形

    Figure  4.  Output signal waveform of the heterodyne power combiner

    图  5  异频功率合成器的S参数

    Figure  5.  S-parameter of the heterodyne power combiner

    图  6  异频功率合成器的电场强度分布

    Figure  6.  Distribution of electric field of the heterodyne power combiner

    表  1  波导滤波器结构参数初值

    Table  1.   Structure Parameters of the Heterodyne power combiner

    w11/mmw12/mmw13/mmw21/mmw22/mmw23/mmd11/mmd12/mmd21/mmd22/mm
    37.110.61.28.9411.6946.146.44140.8
    下载: 导出CSV

    表  2  异频功率合成器优化结构参数

    Table  2.   Optimized structure parameters of the heterodyne power combiner

    w11/mmw12/mmw13/mmw21/mmw22/mmw23/mmd11/mmd12/mmd21/mmd22/mm
    37.110.61.28.9411.6928.929.224.624.4
    下载: 导出CSV
  • [1] Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds[J]. Physics of Plasmas, 2011, 18: 055702. doi: 10.1063/1.3560599
    [2] Song W, Sun J, Song Z M, et al. Suppressing RF breakdown of powerful backward wave oscillator by field redistribution[J]. AIP Advances, 2012, 2: 012118. doi: 10.1063/1.3679546
    [3] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. New York: Taylor & Francis, 2007.
    [4] Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. New York: IEEE Press, 2001.
    [5] 张嘉焱, 舒挺, 袁成卫. 高功率微波空间功率合成的初步研究[J]. 强激光与粒子束, 2007, 19(6):915-918

    Zhang Jiayan, Shu Ting, Yuan Chengwei. Primary study on spatial powers combining of parallel and intersectant beams of high power microwave[J]. High Power Laser and Particle Beams, 2007, 19(6): 915-918
    [6] 徐继东. 基于差相移的异频功率合成[J]. 微波学报, 2020, 36(s1):237-239

    Xu Jidong. Methods of combination for different-frequency microwave signals based on differential phase-shift[J]. Journal of Microwaves, 2020, 36(s1): 237-239
    [7] 何朝雄. 基于拍波的高效紧凑双频相对论磁控管研究[D]. 成都: 电子科技大学, 2022

    He Chaoxiong. Research on efficient and compact dual frequency relativistic magnetron based on beat wave[D]. Chengdu: University of Electronic Science and Technology of China, 2022
    [8] 方进勇, 宁辉, 张世龙, 等. 利用速调管放大器产生高功率微波拍波实验研究[J]. 物理学报, 2003, 52(4):911-913 doi: 10.7498/aps.52.911

    Fang Jinyong, Ning Hui, Zhang Shilong, et al. Production of beat waves using S-band klystron amplifier[J]. Acta Physica Sinica, 2003, 52(4): 911-913 doi: 10.7498/aps.52.911
    [9] 方进勇, 李平, 乔登江. 利用行波管放大器产生微波波段拍波实验[J]. 国防科技大学学报, 2002, 24(4):65-68

    Fang Jinyong, Li Ping, Qiao Dengjiang. The production of beat wave using l-band travelling-wave tube amplifier[J]. Journal of National University of Defense, 2002, 24(4): 65-68
    [10] 李国林, 舒挺, 袁成卫. S波段高功率微波波导输出多工器研究[J]. 强激光与粒子束, 2007, 19(4):667-670

    Li Guolin, Shu Ting, Yuan Chengwei. Output multiplexer for S band high power microwave[J]. High Power Laser and Particle Beams, 2007, 19(4): 667-670
    [11] Li Guolin, Shu Ting, Zhang Jun, et al. Generation of gigawatt level beat waves[J]. Applied Physics Letters, 2010, 96: 234102. doi: 10.1063/1.3449134
    [12] Zhang Qiang, Yuan Chengwei, Liu Lie. Design of a dual-band power combining architecture for high-power microwave applications[J]. Laser and Particle Beams, 2010, 28(3): 377-385. doi: 10.1017/S0263034610000327
    [13] Li Jiawei, Song Wei, Huang Wenhua, et al. Combining gigawatt level X-band high power microwave beams with an overmoded circular waveguide diplexer[J]. Physics of Plasmas, 2014, 21: 023105. doi: 10.1063/1.4865821
    [14] 张宇航. 双频高功率微波合成技术研究[D]. 成都: 电子科技大学, 2019

    Zhang Yuhang. Research on dual-frequency high power microwave synthesis technology[D]. Chengdu: University of Electronic Science and Technology of China, 2019
    [15] 甘本祓, 吴万春. 现代微波滤波器的结构与设计(上册)[M]. 北京: 科学出版社, 1973

    Gan Benfu, Wu Wanchun. Structure and design of modern microwave filters[M]. Beijing: Science Press, 1973
    [16] 高晓惠, 王家礼, 孙璐. S参数法设计波导E面金属插片窄带滤波器[J]. 无线电工程, 2003, 33(12):49-51

    Gao Xiaohui, Wang Jiali, Sun Lu. Design of narrowband waveguide E-plane metal insert filter by using of S-parameter[J]. Radio Engineering, 2003, 33(12): 49-51
    [17] 申凯, 王光明, 齐立辉. 用模式匹配法设计波导双金属膜片滤波器[J]. 中国电子科学研究院学报, 2008, 3(6):653-656

    Shen Kai, Wang Guangming, Qi Lihui. Design of double septum waveguide filter based on mode matching method[J]. Journal of China Academy of Electronics and Information Technology, 2008, 3(6): 653-656
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  23
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-10
  • 修回日期:  2024-02-28
  • 录用日期:  2024-02-04
  • 网络出版日期:  2024-03-18

目录

    /

    返回文章
    返回