留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光自适应光学系统可靠性改进效果评估

贾启旺 李新阳 甘永东 马瑞浩 梅月 斯那卓玛

贾启旺, 李新阳, 甘永东, 等. 激光自适应光学系统可靠性改进效果评估[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230436
引用本文: 贾启旺, 李新阳, 甘永东, 等. 激光自适应光学系统可靠性改进效果评估[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230436
Jia Qiwang, Li Xinyang, Gan Yongdong, et al. Evaluation of reliability improvement effect on laser adaptive optics systems[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230436
Citation: Jia Qiwang, Li Xinyang, Gan Yongdong, et al. Evaluation of reliability improvement effect on laser adaptive optics systems[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230436

激光自适应光学系统可靠性改进效果评估

doi: 10.11884/HPLPB202436.230436
基金项目: 中国科学院创新基金项目(CXJJ-16S022)
详细信息
    作者简介:

    贾启旺,E-mail:jqw_ioe@163.com

    通讯作者:

    李新阳,E-mail:xyli@ioe.ac.cn

  • 中图分类号: TN249

Evaluation of reliability improvement effect on laser adaptive optics systems

  • 摘要: 随着自适应光学技术在激光领域的发展,工程上以经典自适应光学(AO)系统为基础,增加了多种基于软件监测和硬件保护的改进措施以保证激光AO系统稳定连续出光。面对结构复杂度提升带来的可靠性挑战,如何构建系统失效模型对激光AO系统可靠性进行评估,成为影响激光AO系统发展的重要一环。本文以激光光稳净化AO系统为例,提出使用动态故障树方法对激光AO系统可靠性进行评估,根据设备间动态关系建立动态故障树(DFT),结合厂家信息、疲劳寿命试验与历史数据估计得到底事件失效率,使用二元决策图和马尔可夫模型求解得到DFT的可靠性参数。使用DFT分析增加改进措施的AO系统可靠运行时间,结果相对于基本故障树获得了十倍以上的提高。实际系统调试期间,在预计的可靠运行时间内未发生自因故障,与DFT估计结果一致。验证了应用DFT方法评估增加改进措施后的激光AO系统可靠性更准确。
  • 图  1  逻辑门图形表示

    Figure  1.  Logic gate graphic representation

    图  2  光稳净化系统组成结构图

    Figure  2.  Structure diagram of beam stabilization and clean system

    图  3  经典AO系统结构图

    Figure  3.  Classical AO system structure diagram

    图  4  经典AO系统故障树

    Figure  4.  Fault tree of classical AO system

    图  5  波前探测模块动态故障树

    Figure  5.  Dynamic fault tree of wavefront detection module

    图  6  波前控制模块动态故障树

    Figure  6.  Dynamic fault tree of wavefront control module

    图  7  检测功能依赖于波前处理模块故障树

    Figure  7.  The fault tree of detection function depending on the wave front processing module

    图  8  波前校正模块动态故障树

    Figure  8.  Dynamic fault tree of wavefront correction module

    图  9  供电模块动态故障树

    Figure  9.  Dynamic fault tree of power supply module

    图  10  改进AO系统动态故障树

    Figure  10.  Dynamic Fault Tree of Improved AO System

    图  11  改进AO系统失效概率-时间曲线

    Figure  11.  Failure probability time curve of improved AO control system

    图  12  改进前后AO系统失效概率-时间曲线对比

    Figure  12.  Comparison of failure probability-time curve of AO system before and after improvement

    表  1  AO系统基本故障树事件表

    Table  1.   AO system basic fault tree events table

    event failure event meaning failure rate/h−1 event failure event meaning failure rate/h−1
    T1 classical AO system failure X4 beam clean wavefront processing failure 2×10−5
    M1 failure of wavefront control subsystem X5 beam stabilization high-voltage drive failure 1.5×10−5
    M2 failure of monitoring and recording subsystem X6 beam clean high-voltage drive failure 1.5×10−5
    M3 communication subsystem failure X7 beam stabilization tilt mirror failure 2×10−3
    M4 power subsystem failure X8 beam clean deformable mirror failure 2×10−3
    M5 wavefront detection module failure X9 monitoring control module failure 1×10−5
    M6 wavefront processing module failure X10 failure of data recording module 1×10−5
    M7 wavefront control module failure X11 main control network failure 1×10−5
    M8 wavefront correction module failure X12 electric control network failure 1×10−5
    X1 beam stabilization wavefront detection failure 1×10−5 X13 program control power supply failure 1×10−5
    X2 beam clean wavefront detection failure 1×10−5 X14 total power failure 1×10−5
    X3 beam stabilization wavefront processing failure 2×10−5
    下载: 导出CSV

    表  2  改进AO系统动态故障树新增事件表

    Table  2.   Added event table of improved AO system dynamic fault tree

    event failure event meaning failure rate/h−1 event failure event meaning failure rate/h−1
    T2 AO system failure with reliability
    improvement measures
    M15 mirror monitoring and warning failure 1×10−2
    M9 power supply module failure X15 UPS failure 2×10−3
    M10 sensor detection failure X15 UPS spare failure 1×10−5
    M11 high voltage protection failure X16 image slope effectiveness monitoring failure 1×10−2
    M12 high pressure drive failure X17 voltage instability monitoring failure 1×10−2
    M13 active mirror protection failure X18 hardware protection network failure 1.5×10−5
    M14 active mirror failure X19 air knife failure 1.5×10−3
    下载: 导出CSV

    表  3  改进AO系统动态故障树事件重要度表

    Table  3.   Event importance table of improved AO system DFT

    event Is Ip Ic
    X1 2~12 0.5797 0.0160
    X2 2~12 0.5797 0.0160
    X3 2~10 0.9070 0.0499
    X4 2~10 0.9070 0.0499
    X5 2~12 0.0014 5.9110×10−5
    X6 2~12 0.0014 5.9110×10−5
    X7 2~12 0.0335 0.1429
    X8 2~12 0.0335 0.1429
    X9 2~10 0.9046 0.0249
    X10 2~10 0.9046 0.0249
    X11 2~10 0.9046 0.0249
    X12 2~10 0.9046 0.0249
    X13 2~10 0.9046 0.0249
    X14 2~11 0.0016 4.4057×10−5
    X15 2~11 1.4412×10−6 6.1455×10−6
    X15 2~11 0.0012 3.3525×10−5
    X16 2~11 0.0072 0.0682
    X17 2~12 2.2341×10−5 2.1297×10−4
    X18 2~12 0.0029 1.1873×10−4
    X19 2~12 0.2281 0.7762
    M15 2~12 0.1511 1.4403
    下载: 导出CSV

    表  4  改进AO系统动态故障树事件重要度表

    Table  4.   Test record of beam stablation and purification system

    time for once
    experiment/s
    times during
    experiments/times
    total time/
    s·times
    0.5 24 184
    1 22
    2 1
    3 6
    5 5
    10 3
    15 1
    30 2
    下载: 导出CSV
  • [1] 姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45:170489

    Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45: 170489
    [2] 杨泽平, 李恩德, 张小军, 等. “神光-Ⅲ”主机装置的自适应光学波前校正系统[J]. 光电工程, 2018, 45:180049

    Yang Zeping, Li Ende, Zhang Xiaojun, et al. Adaptive optics correction systems on Shen Guang Ⅲ facility[J]. Opto-Electronic Engineering, 2018, 45: 180049
    [3] 芮道满, 刘超, 陈莫, 等. 自适应光学技术在星地激光通信地面站上的应用[J]. 光电工程, 2018, 45:170647

    Rui Daoman, Liu Chao, Chen Mo, et al. Application of adaptive optics on the satellite laser communication ground station[J]. Opto-Electronic Engineering, 2018, 45: 170647
    [4] 饶长辉, 朱磊, 张兰强, 等. 太阳自适应光学技术进展[J]. 光电工程, 2018, 45:170733

    Rao Changhui, Zhu Lei, Zhang Lanqiang, et al. Development of solar adaptive optics[J]. Opto-Electronic Engineering, 2018, 45: 170733
    [5] 戴云, 肖飞, 赵军磊, 等. 自适应光学人眼像差调控及其应用[J]. 光电工程, 2018, 45:170703

    Dai Yun, Xiao Fei, Zhao Junlei, et al. Ocular aberrations manipulation with adaptive optics and its application[J]. Opto-Electronic Engineering, 2018, 45: 170703
    [6] 刘兴富, 朱野, 刘会杰, 等. 某星载长寿命导电滑环传输可靠性评估[J]. 光学 精密工程, 2019, 27(9):2028-2035 doi: 10.3788/OPE.20192709.2028

    Liu Xingfu, Zhu Ye, Liu Huijie, et al. Study on the transmission reliability of long life space electric slip ring[J]. Optics and Precision Engineering, 2019, 27(9): 2028-2035 doi: 10.3788/OPE.20192709.2028
    [7] 李杨, 韩诚山, 徐抒岩, 等. 定量化故障树分析技术在空间相机软件开发中的应用[J]. 光学 精密工程, 2008, 16(11):2180-2186

    Li Yang, Han Chengshan, Xu Shuyan, et al. Application of quantitative fault tree analysis for space camera software development[J]. Optics and Precision Engineering, 2008, 16(11): 2180-2186
    [8] 王严, 孙天宇, 罗佺佺, 等. 天问一号高分相机多状态可靠性建模方法[J]. 光学 精密工程, 2022, 30(2):137-142 doi: 10.37188/OPE.20223002.0137

    Wang Yan, Sun Tianyu, Luo Quanquan, et al. Multi-state reliability modeling method for Tianwen-1 high-resolution camera[J]. Optics and Precision Engineering, 2022, 30(2): 137-142 doi: 10.37188/OPE.20223002.0137
    [9] 高国庆, 周璐春. 基于故障树的自适应光学电控系统可靠性分析[J]. 激光与光电子学进展, 2016, 53:010102

    Gao Guoqing, Zhou Luchun. Fault tree analysis on reliability of electronic control system of adaptive optics[J]. Laser & Optoelectronics Progress, 2016, 53: 010102
    [10] 毕菁, 凌宁, 胡羿云. 变形镜极间电压保护网络研究[J]. 光电工程, 2006, 33(7):34-38

    Bi Jing, Ling Ning, Hu Yiyun. Protective network research on the actuator voltage of deformable mirror[J]. Opto-Electronic Engineering, 2006, 33(7): 34-38
    [11] 牛龙飞, 蒋一岚, 苗心向, 等. 大口径反射镜表面颗粒物洁净度控制实验研究[J]. 红外与激光工程, 2021, 50:20210117 doi: 10.3788/IRLA20210117

    Niu Longfei, Jiang Yilan, Miao Xinxiang, et al. Experimental study of particles cleanliness control on the surface of large-aperture reflector[J]. Infrared and Laser Engineering, 2021, 50: 20210117 doi: 10.3788/IRLA20210117
    [12] 宋定安, 李新阳, 彭真明. 0-1故障模型在自适应光学系统中的应用[J]. 红外与激光工程, 2018, 47:1111004 doi: 10.3788/IRLA201847.1111004

    Song Dingan, Li Xinyang, Peng Zhenming. Application of 0-1 fault model in adaptive optics system[J]. Infrared and Laser Engineering, 2018, 47: 1111004 doi: 10.3788/IRLA201847.1111004
    [13] 甘永东, 梅月, 沈锋, 等. 一种自适应光学系统稳定闭环控制方法: 112782844A[P]. 2021-05-11

    Gan Yongdong, Mei Yue, Shen Feng, et al. A stable closed-loop control method for adaptive optical systems: 112782844A[P]. 2021-05-11
    [14] 贾启旺, 李新阳, 罗曦. 自适应光学系统运行失稳检测方法[J]. 红外与激光工程, 2020, 49:20200299

    Jia Qiwang, Li Xinyang, Luo Xi. Detection methods for instability of adaptive optics system[J]. Infrared and Laser Engineering, 2020, 49: 20200299
    [15] 甘永东, 沈锋, 李新阳, 等. 一种自适应光学系统自动开/闭环决策方法: 110441927B[P]. 2020-10-13

    Gan Yongdong, Shen Feng, Li Xinyang, et al. An automatic open/closed loop decision method for adaptive optical systems: 110441927B[P]. 2020-10-13
    [16] Dugan J B, Bavuso S J, Boyd M A. Dynamic fault-tree models for fault-tolerant computer systems[J]. IEEE Transactions on Reliability, 1992, 41(3): 363-377. doi: 10.1109/24.159800
    [17] Fahmy R A, Gomaa R I. Dynamic fault tree analysis of auxiliary feedwater system in a pressurized water reactor[J]. Kerntechnik, 2021, 86(2): 164-172. doi: 10.1515/KERN-2020-0067
    [18] Baek S, Heo G. Application of dynamic fault tree analysis to prioritize electric power systems in nuclear power plants[J]. Energies, 2021, 14: 4119. doi: 10.3390/en14144119
    [19] Chen Yafeng, Wen Jing, Tian Yingjie, et al. Dynamic reliability assessment method for a pantograph system based on a multistate T-S fault tree, dynamic Bayesian[J]. Applied Sciences, 2023, 13: 10711. doi: 10.3390/app131910711
    [20] Yan Lu, Zhang Tao, Gao Ying, et al. Reliability analysis of station autonomous computer system based on fuzzy dynamic fault tree and Markov model[J]. Engineering Reports, 2021, 3: e12376. doi: 10.1002/eng2.12376
    [21] Zhu Chengyuan, Zhang Tianyuan. A review on the realization methods of dynamic fault tree[J]. Quality and Reliability Engineering International, 2022, 38(6): 3233-3251. doi: 10.1002/qre.3139
    [22] 刘东, 张红林, 王波, 等. 动态故障树分析方法[M]. 北京: 国防工业出版社, 2013

    Liu Dong, Zhang Honglin, Wang Bo, et al. Methodologies of dynamic fault trees analysis[M]. Beijing: National Defense Industry Press, 2013
    [23] 李军星, 张勇波, 傅惠民, 等. 离子推力器极少数据可靠性评估方法[J]. 航空动力学报, 2015, 30(10):2352-2356

    Li Junxing, Zhang Yongbo, Fu Huimin, et al. Reliability evaluation method of ion thruster withvery few failure data[J]. Journal of Aerospace Power, 2015, 30(10): 2352-2356
  • 加载中
计量
  • 文章访问数:  30
  • HTML全文浏览量:  16
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14
  • 修回日期:  2024-03-13
  • 录用日期:  2024-02-29
  • 网络出版日期:  2024-03-21

目录

    /

    返回文章
    返回