留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
杨月, 孙斌, 邓志刚, 等. 拍瓦激光驱动纳米刷靶高品质质子束的产生[J]. 强激光与粒子束, 2024, 36: 101004. doi: 10.11884/HPLPB202436.230440
引用本文: 杨月, 孙斌, 邓志刚, 等. 拍瓦激光驱动纳米刷靶高品质质子束的产生[J]. 强激光与粒子束, 2024, 36: 101004. doi: 10.11884/HPLPB202436.230440
Yang Yue, Sun Bin, Deng Zhigang, et al. Generation of high-quality proton beam in nanobrush targets driven by PW laser pulse[J]. High Power Laser and Particle Beams, 2024, 36: 101004. doi: 10.11884/HPLPB202436.230440
Citation: Yang Yue, Sun Bin, Deng Zhigang, et al. Generation of high-quality proton beam in nanobrush targets driven by PW laser pulse[J]. High Power Laser and Particle Beams, 2024, 36: 101004. doi: 10.11884/HPLPB202436.230440

拍瓦激光驱动纳米刷靶高品质质子束的产生

doi: 10.11884/HPLPB202436.230440
基金项目: 国家自然科学基金项目(11975214、12175212)
详细信息
    作者简介:

    杨 月,yangy10_my@163.com

    通讯作者:

    赵宗清,zhaozongqing99@caep.cn

  • 中图分类号: O434.12

Generation of high-quality proton beam in nanobrush targets driven by PW laser pulse

  • 摘要: 超强激光加速产生的高能质子束源在基础物理研究、材料科学、生物医疗等领域具有广泛应用前景。基于激光聚变研究中心的SILEX-II装置,开展了高对比度飞秒激光驱动纳米刷靶质子加速实验研究。采用等离子体镜技术进一步提升激光对比度,有效降低了预脉冲对纳米刷靶结构的影响。相比于平面靶,采用纳米刷靶质子截止能量提高到1.5倍,质子束产额增加近一个量级,成功验证了超高功率密度下纳米刷靶对激光离子加速的增强效果,并且有效提升了质子束空间分布的均匀性。研究结果为高品质质子束源的产生和应用提供了技术途径。
  • 图  1  高对比度激光纳米刷靶质子加速实验排布

    Figure  1.  High-contrast laser nanobrush-target proton acceleration experiment configuration

    图  2  不同靶型产生的离子能谱

    Figure  2.  Ion energy spectra produced by different targets

    图  3  不同靶型产生的超热电子能谱

    Figure  3.  Hot electron energy spectra produced by different targets

    图  4  不同激光功率下两种靶的实验结果对比

    Figure  4.  Comparison of experimental results of two targets at different laser powers

    图  5  不同靶型质子束斑分布

    Figure  5.  Proton beam spot distribution of different targets

  • [1] Tabak M, Clark D S, Hatchett S P, et al. Review of progress in fast ignition[J]. Physics of Plasmas, 2005, 12: 057305. doi: 10.1063/1.1871246
    [2] Cai Hongbo, Mima K, Zhou Weimin, et al. Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition[J]. Physical Review Letters, 2009, 102: 245001. doi: 10.1103/PhysRevLett.102.245001
    [3] Roth M, Cowan T E, Key M H, et al. Fast ignition by intense laser-accelerated proton beams[J]. Physical Review Letters, 2001, 86(3): 436-439. doi: 10.1103/PhysRevLett.86.436
    [4] Malka V, Fritzler S, Lefebvre E, et al. Practicability of protontherapy using compact laser systems[J]. Medical Physics, 2004, 31(6): 1587-1592. doi: 10.1118/1.1747751
    [5] Wang Jian, Zhao Zongqing, He Weihua, et al. Radiography of a Kα X-ray source generated through ultrahigh picosecond laser–nanostructure target interaction[J]. Chinese Optics Letters, 2015, 13: 031001. doi: 10.3788/COL201513.031001
    [6] Curtis A, Hollinger R, Calvi C, et al. Ion acceleration and D-D fusion neutron generation in relativistically transparent deuterated nanowire arrays[J]. Physical Review Research, 2021, 3: 043181. doi: 10.1103/PhysRevResearch.3.043181
    [7] Chao Yue, Cao Lihua, Zheng Chunyang, et al. Enhanced proton acceleration from laser interaction with a tailored nanowire target[J]. Applied Sciences, 2022, 12: 1153. doi: 10.3390/app12031153
    [8] Cao Lihua, Gu Yuqiu, Zhao Zongqing, et al. Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target[J]. Physics of Plasmas, 2010, 17: 043103. doi: 10.1063/1.3360298
    [9] Cao Lihua, Gu Yuqiu, Zhao Zongqing, et al. Control of the hot electrons produced by laser interaction with nanolayered target[J]. Physics of Plasmas, 2010, 17: 103106. doi: 10.1063/1.3481463
    [10] Eftekhari-Zadeh E, Blümcke M S, Samsonova Z, et al. Laser energy absorption and X-ray generation in nanowire arrays irradiated by relativistically intense ultra-high contrast femtosecond laser pulses[J]. Physics of Plasmas, 2022, 29: 013301. doi: 10.1063/5.0064364
    [11] Zhao Zongqing, Cao Lihua, Cao Leifeng, et al. Acceleration and guiding of fast electrons by a nanobrush target[J]. Physics of Plasmas, 2010, 17: 123108. doi: 10.1063/1.3507292
    [12] Ji Yanling, Jiang Gang, Wu Weidong, et al. Efficient generation and transportation of energetic electrons in a carbon nanotube array target[J]. Applied Physics Letters, 2010, 96: 041504. doi: 10.1063/1.3298016
    [13] Li Boyuan, Zhang Zhimeng, Wang Jian, et al. Transport of fast electrons in a nanowire array with collisional effects included[J]. Physics of Plasmas, 2015, 22: 123118. doi: 10.1063/1.4938515
    [14] Yang Yue, Li Boyuan, Yan Yonghong, et al. Investigation on the transport efficiency of fast electrons with double-layer Kα fluorescence measurement[J]. Physics of Plasmas, 2019, 26: 073101. doi: 10.1063/1.5096933
    [15] Yang Yue, Li Boyuan, Wu Yuchi, et al. Manipulation and optimization of electron transport by nanopore array targets[J]. Plasma Science and Technology, 2021, 23: 015001. doi: 10.1088/2058-6272/abbd37
    [16] Ong J F, Ghenuche P, Tanaka K A. Electron transport in a nanowire irradiated by an intense laser pulse[J]. Physical Review Research, 2021, 3: 033262. doi: 10.1103/PhysRevResearch.3.033262
    [17] Bruner N, Schleifer E, Palchan T, et al. Generation of fast protons by interaction of modest laser intensities with H2O “snow” nano-wire targets[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 653(1): 156-158.
    [18] Margarone D, Klimo O, Kim I J, et al. Laser-driven proton acceleration enhancement by nanostructured foils[J]. Physical Review Letters, 2012, 109: 234801. doi: 10.1103/PhysRevLett.109.234801
    [19] Ceccotti T, Floquet V, Sgattoni A, et al. Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets[J]. Physical Review Letters, 2013, 111: 185001. doi: 10.1103/PhysRevLett.111.185001
    [20] Ma Wenjun, Kim I J, Yu Jinqing, et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil[J]. Physical Review Letters, 2019, 122: 014803. doi: 10.1103/PhysRevLett.122.014803
    [21] Yu Jinqing, Zhou Weimin, Cao Lihua, et al. Enhancement in coupling efficiency from laser to forward hot electrons by conical nanolayered targets[J]. Applied Physics Letters, 2012, 100: 204101. doi: 10.1063/1.4718735
    [22] Park J, Tommasini R, Shepherd R, et al. Absolute laser energy absorption measurement of relativistic 0.7 ps laser pulses in nanowire arrays[J]. Physics of Plasmas, 2021, 28: 023302. doi: 10.1063/5.0035174
    [23] Khaghani D, Lobet M, Borm B, et al. Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy[J]. Scientific Reports, 2017, 7: 11366. doi: 10.1038/s41598-017-11589-z
    [24] Cristoforetti G, Londrillo P, Singh P K, et al. Transition from coherent to stochastic electron heating in ultrashort relativistic laser interaction with structured targets[J]. Scientific Reports, 2017, 7: 1479. doi: 10.1038/s41598-017-01677-5
  • 加载中
图(5)
计量
  • 文章访问数:  406
  • HTML全文浏览量:  202
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-17
  • 修回日期:  2024-01-11
  • 录用日期:  2024-01-13
  • 网络出版日期:  2024-01-17
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回