留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超宽带薄型频率选择表面吸波体设计

李希 王东俊 张袁 赵翔 闫丽萍

李希, 王东俊, 张袁, 等. 超宽带薄型频率选择表面吸波体设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230443
引用本文: 李希, 王东俊, 张袁, 等. 超宽带薄型频率选择表面吸波体设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230443
Li Xi, Wang Dongjun, Zhang Yuan, et al. Design of an ultra-wideband thin frequency selective surface absorber[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230443
Citation: Li Xi, Wang Dongjun, Zhang Yuan, et al. Design of an ultra-wideband thin frequency selective surface absorber[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230443

超宽带薄型频率选择表面吸波体设计

doi: 10.11884/HPLPB202436.230443
基金项目: 国家自然科学基金区域创新发展联合基金项目(U22A2015)
详细信息
    作者简介:

    李 希,

    通讯作者:

    闫丽萍,。

  • 中图分类号: TN03

Design of an ultra-wideband thin frequency selective surface absorber

  • 摘要: 设计了一种新型集总电阻加载超宽带薄型频率选择表面(FSS)吸波体。该吸波体使用单层单谐振FSS损耗层结构,具有厚度薄、宽带吸波且极化稳定的特点。FSS损耗层单元结构采用非单元中心对称轴集总电阻加载方法,并结合非均匀金属导带宽度和圆顶枝节加载设计有效拓宽了吸波带宽。该吸波体的等效电路分析及全波仿真结果均表明该结构在6.0~26.77 GHz频段内对电磁波吸波率能够达到90%,相对带宽达到126.8%。该吸波体总厚度为0.086λLλL为吸波频段最低频率对应波长),仅为Rozanov理论极限厚度的1.09倍。对该吸波体进行加工与测试,实测结果与仿真结果一致,验证了设计的有效性。
  • 图  1  FSS吸波体单元结构图

    Figure  1.  Unit cell structure of the proposed FSS absorber

    图  2  FSS结构演变示意图

    Figure  2.  Design evolution of the FSS structure

    图  3  FSS 1、FSS 2与 FSS 3 结构性能对比

    Figure  3.  The comparison of performance for FSS 1, FSS 2 and FSS 3 structures

    图  4  FSS 3、FSS 4与FSS 5性能对比

    Figure  4.  Comparison between the performance of FSS 3, FSS 4 and FSS 5 structures

    图  5  等效电路模型及其与全波分析结果对比

    Figure  5.  The equivalent circuit model and comparison to full wave simulation

    图  6  垂直入射时的反射系数与吸波率

    Figure  6.  Full-wave simulated results under normal incidence

    图  7  吸波体在不同极化方式下的角度稳定性

    Figure  7.  Angular stability of the absorber for different polarizations

    图  8  实验测试系统以及加工实物示意图

    Figure  8.  Experimental system and the proposed prototypes

    图  9  实测与仿真吸波率对比

    Figure  9.  Comparison of absorption between measurement and simulation

    表  1  与文献中集总电阻FSS吸波体的性能比较

    Table  1.   Comparison between the proposed and reported FSS absorbers loaded with lumped resistors

    Reference Bandwidth/
    GHz (%)
    absorbers
    thickness/λL
    Number of lumped
    resistors in the unit cell
    Structure of
    unit cell
    [10] 2.24~11.4
    (134.3%)
    0.075 16 2 FSS lossy layers
    [13] 6.7~20.58
    (101.7%)
    0.067 8 Single FSS layer, multiple resonant
    [14] 2.68~12.19
    (127.9%)
    0.08 8 Single FSS layer, multiple resonant
    [15] 1.5~12.31
    (156.6%)
    0.113 4 3D structure
    [19] 5.8~22.2
    (117.1%)
    0.155 16 Single FSS layer, dielectric compensation layer
    [20] 3.58~12.1
    (108.67%)
    0.077 4 Single FSS layer, single resonant
    Proposed absorber 6.0~26.77
    (126.8%)
    0.086 4 Single FSS layer, single resonant
    下载: 导出CSV
  • [1] 张靖晗, 闫丽萍, 黄钰, 等. 电磁屏蔽用低频比小型化双频带频率选择表面[J]. 强激光与粒子束, 2021, 33:053055

    Zhang Jinghan, Yan Liping, Huang Yu, et al. A miniaturized dual-band frequency selective surface with low frequency ratio for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2021, 33: 053055
    [2] 唐朝京. 网电对抗下的复杂电磁环境再认识[J]. 强激光与粒子束, 2019, 31:103201

    Tang Chaojing. Recognition of complex electromagnetic environment under cyberspace countermeasures[J]. High Power Laser and Particle Beams, 2019, 31: 103201
    [3] Yao Zhixin, Xiao Shaoqiu, Li Yan, et al. Wide-angle, ultra-wideband, polarization-independent circuit analog absorbers[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 7276-7281. doi: 10.1109/TAP.2022.3149594
    [4] Zhang Chonghuan, Liu Siyuan, Ni Haizhi, et al. An angle-stable ultra-wideband single-layer frequency selective surface absorber[J]. Electronics, 2023, 12: 3776. doi: 10.3390/electronics12183776
    [5] Munk B A. Frequency selective surfaces: Theory and design[M]. New York: Wiley, 2000.
    [6] 强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31:103222

    Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222
    [7] Kundu D, Baghel S, Mohan A, et al. Design and analysis of printed lossy capacitive surface-based ultrawideband low-profile absorber[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3533-3538. doi: 10.1109/TAP.2019.2902660
    [8] Fan Yudi, Li Da, Ma Hanzhi, et al. Ultrawideband dual-polarized frequency-selective absorber with tunable reflective notch[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2855-2860. doi: 10.1109/TAP.2023.3239161
    [9] Chen Jianlin, Shang Yuping, Liao Cheng. Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 591-595. doi: 10.1109/LAWP.2018.2805333
    [10] Yao Zhixin, Xiao Shaoqiu, Jiang Zhiguo, et al. On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 591-595. doi: 10.1109/LAWP.2020.2972919
    [11] He Yun, Feng Weisen, Guo Sai, et al. Design of a dual-band electromagnetic absorber with frequency selective surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 841-845. doi: 10.1109/LAWP.2020.2981729
    [12] Sun Zihan, Yan Liping, Zhao Xiang, et al. An ultrawideband frequency selective surface absorber with high polarization-independent angular stability[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(4): 789-793. doi: 10.1109/LAWP.2022.3225582
    [13] Sambhav S, Ghosh J, Singh A K. Ultra-wideband polarization insensitive thin absorber based on resistive concentric circular rings[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(5): 1333-1340. doi: 10.1109/TEMC.2021.3058583
    [14] Zhang Binchao, Jin Cheng, Shen Zhongxiang. Low-profile broadband absorber based on multimode resistor-embedded metallic strips[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 835-843. doi: 10.1109/TMTT.2019.2956933
    [15] Luo Guoqing, Yu Weiliang, Yu Yufeng, et al. A three-dimensional design of ultra-wideband microwave absorbers[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(10): 4206-4215. doi: 10.1109/TMTT.2020.3011437
    [16] Huang Hao, Shen Zhongxiang, Omar A A. 3-D absorptive frequency selective reflector for antenna radar cross section reduction[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5908-5917. doi: 10.1109/TAP.2017.2751670
    [17] Mou Jinchao, Shen Zhongxiang. Design and experimental demonstration of non-foster active absorber[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 696-704. doi: 10.1109/TAP.2016.2639012
    [18] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230-1234. doi: 10.1109/8.884491
    [19] Ma Zheyipei, Jiang Chao, Cao Wenbo, et al. An ultrawideband and high-absorption circuit-analog absorber with incident angle-insensitive performance[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9376-9384. doi: 10.1109/TAP.2022.3177490
    [20] Parameswaran A, Ovhal A A, Kundu D, et al. A low-profile ultra-wideband absorber using lumped resistor-loaded cross dipoles with resonant nodes[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1758-1766. doi: 10.1109/TEMC.2022.3196406
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  18
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-12
  • 修回日期:  2024-02-07
  • 录用日期:  2024-02-02
  • 网络出版日期:  2024-03-16

目录

    /

    返回文章
    返回