留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微纳结构及材料特性的光场调控模拟研究

郑鑫智 豆世骥 刘翔 赵晨淅 赵世龙 杨月 王少义 赵宗清 马钰洁

郑鑫智, 豆世骥, 刘翔, 等. 基于微纳结构及材料特性的光场调控模拟研究[J]. 强激光与粒子束, 2024, 36: 031002. doi: 10.11884/HPLPB202436.230453
引用本文: 郑鑫智, 豆世骥, 刘翔, 等. 基于微纳结构及材料特性的光场调控模拟研究[J]. 强激光与粒子束, 2024, 36: 031002. doi: 10.11884/HPLPB202436.230453
Zheng Xinzhi, Dou Shiji, Liu Xiang, et al. Simulation of light field regulation based on micro-nano structure and material properties[J]. High Power Laser and Particle Beams, 2024, 36: 031002. doi: 10.11884/HPLPB202436.230453
Citation: Zheng Xinzhi, Dou Shiji, Liu Xiang, et al. Simulation of light field regulation based on micro-nano structure and material properties[J]. High Power Laser and Particle Beams, 2024, 36: 031002. doi: 10.11884/HPLPB202436.230453

基于微纳结构及材料特性的光场调控模拟研究

doi: 10.11884/HPLPB202436.230453
基金项目: 国家自然科学基金项目(11975214)
详细信息
    作者简介:

    郑鑫智,2110416034@stumail.sztu.edu.cn

    通讯作者:

    马钰洁,mayujie@sztu.edu.cn

  • 中图分类号: TN25

Simulation of light field regulation based on micro-nano structure and material properties

  • 摘要: 利用时域有限差分算法(FDTD)对微纳结构靶的光场分布进行仿真模拟,探究微纳结构靶中的光传输机制,分析材料特性和结构参数对光传输特性和光场分布的影响。基于光场分布及演化的仿真模拟结果,对比半导体氧化铝、绝缘体二氧化硅和金属铜三种导电性不同的材料上纳米线和纳米孔阵列微纳结构靶的激光传输特性,分析光传输过程中的光场分布变化。研究结果表明,通过改变氧化铝和二氧化硅纳米孔(线)阵列结构靶中孔洞(纳米线)直径和间距等结构参数,可以实现对微纳结构靶中光传输特性和光场分布的调制,实现光场在介质材料和真空区域间的周期振荡分布,或是以一种稳定形态传输;激光在铜纳米孔阵列中传输时,透光性随孔洞半径的增加而增加。基于光场分布及演化的仿真模拟结果,对比不同材料、不同微纳结构靶的激光传输演化特性,给出物理图像及对应现象规律,根据光场调控需求,给出微纳结构靶设计。
  • 图  1  孔洞型微纳结构靶示意图

    Figure  1.  Schematic diagram of nanopore array target

    图  2  孔洞阵列结构靶纵截面与横截面光场分布随纵轴位置变化示意图

    Figure  2.  Distribution of light field in longitudinal section and light field distribution in cross section of nanopore array target with position of vertical axis

    图  3  结构靶横截面透射率随传输距离变化示意图

    Figure  3.  Schematic diagram of structural target cross section transmission variation with transmission distance

    图  4  接收端与横截面光场分布图

    Figure  4.  Receiving end and cross-sectional light field distribution diagram

    图  5  二氧化硅孔洞阵列结构靶纵截面光场分布以及横截面光场分布随纵轴位置变化示意图

    Figure  5.  Distribution of light field in longitudinal section of target with SiO2 cavity array structure and the light field distribution in cross section of target with SiO2 nanopore array target with position of vertical axis

    图  6  接收端与横截面光场分布图

    Figure  6.  Receiving end and cross-sectional light field distribution diagram

    图  7  铜孔洞阵列结构靶纵截面光场分布图

    Figure  7.  Light field distribution of the longitudinal section of the target with copper nanopore array structure

    图  8  激光照射金属纳米线结构示意图以及接收端和横截面光场分布图

    Figure  8.  Schematic diagram of the structure of metal nanowire irradiated by laser, and light field distribution diagram at the receiving end and cross section

  • [1] Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
    [2] 邓建军, 王勐, 谢卫平, 等. 面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J]. 强激光与粒子束, 2014, 26:100201 doi: 10.3788/HPLPB20142610.100201

    Deng Jianjun, Wang Meng, Xie Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor[J]. High Power Laser and Particle Beams, 2014, 26: 100201 doi: 10.3788/HPLPB20142610.100201
    [3] 丁永坤, 江少恩, 刘慎业, 等. 激光聚变研究中心聚变靶物理实验和诊断技术研究进展[J]. 强激光与粒子束, 2013, 25(12):3077-3081 doi: 10.3788/HPLPB20132512.3077

    Ding Yongkun, Jiang Shaoen, Liu Shenye, et al. Recent progress on physical experiment and target diagnostics in research center of laser fusion[J]. High Power Laser and Particle Beams, 2013, 25(12): 3077-3081 doi: 10.3788/HPLPB20132512.3077
    [4] Patel P K, Mackinnon A J, Key M H, et al. Isochoric heating of solid-density matter with an ultrafast proton beam[J]. Physical Review Letters, 2003, 91: 125004. doi: 10.1103/PhysRevLett.91.125004
    [5] Hu H Y, Müller C, Keitel C H. Complete QED theory of multiphoton trident pair production in strong laser fields[J]. Physical Review Letters, 2010, 105: 080401. doi: 10.1103/PhysRevLett.105.080401
    [6] Li Boyuan, Zhang Zhimeng, Wang Jian, et al. Transport of fast electrons in a nanowire array with collisional effects included[J]. Physics of Plasmas, 2015, 22: 123118. doi: 10.1063/1.4938515
    [7] Yang Yue, Li Boyuan, Wu Yuchi, et al. Manipulation and optimization of electron transport by nanopore array targets[J]. Plasma Science and Technology, 2021, 23: 15001. doi: 10.1088/2058-6272/abbd37
    [8] Jiang S, Krygier A G, Schumacher D W, et al. Effects of front-surface target structures on properties of relativistic laser-plasma electrons[J]. Physical Review E, 2014, 89: 013106. doi: 10.1103/PhysRevE.89.013106
    [9] Snyder J, Ji Liangliang, George K M, et al. Relativistic laser driven electron accelerator using micro-channel plasma targets[J]. Physics of Plasmas, 2019, 26: 033110. doi: 10.1063/1.5087409
    [10] Kong Defeng, Zhang Guoqiang, Shou Yinren, et al. High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions[J]. Matter and Radiation at Extremes, 2022, 7: 064403. doi: 10.1063/5.0120845
    [11] Shou Yinren, Kong Defeng, Wang Pengjie, et al. High-efficiency water-window X-ray generation from nanowire array targets irradiated with femtosecond laser pulses[J]. Optics Express, 2021, 29(4): 5427-5436. doi: 10.1364/OE.417512
    [12] Demaria A J, Stetser D A, Heynau H. Self mode-locking of lasers with saturable absorbers[J]. Applied Physics Letters, 1966, 8(7): 174-176. doi: 10.1063/1.1754541
    [13] Poyé A, Hulin S, Bailly-Grandvaux M, et al. Physics of giant electromagnetic pulse generation in short-pulse laser experiments[J]. Physical Review E, 2015, 91: 043106. doi: 10.1103/PhysRevE.91.043106
    [14] De Marco M, Cikhardt J, Krása J, et al. Electromagnetic pulses produced by expanding laser produced Au plasma[J]. Nukleonika, 2015, 60(2): 239-243. doi: 10.1515/nuka-2015-0043
    [15] Mead M J, Neely D, Gauoin J, et al. Electromagnetic pulse generation within a petawatt laser target chamber[J]. Review of Scientific Instruments, 2004, 75(10): 4225-4227. doi: 10.1063/1.1787606
    [16] Xu Zhiqian, Meng Cui. Numerical simulation of EMP environment radiated by X-rays inside a high-power laser facility[C]//2018 International Applied Computational Electromagnetics Society Symposium (ACES). 2018: 1-2.
    [17] Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307. doi: 10.1109/TAP.1966.1138693
  • 加载中
图(8)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  39
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-31
  • 修回日期:  2024-02-01
  • 录用日期:  2024-02-01
  • 网络出版日期:  2024-02-20
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回