留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带反偏置的双路高压脉冲电源的研究

李孜 张迪 姜松 王永刚 饶俊峰

李孜, 张迪, 姜松, 等. 带反偏置的双路高压脉冲电源的研究[J]. 强激光与粒子束, 2024, 36: 035002. doi: 10.11884/HPLPB202436.240003
引用本文: 李孜, 张迪, 姜松, 等. 带反偏置的双路高压脉冲电源的研究[J]. 强激光与粒子束, 2024, 36: 035002. doi: 10.11884/HPLPB202436.240003
Li Zi, Zhang Di, Jiang Song, et al. Research on two-channel high-voltage pulse generator with reverse bias voltage[J]. High Power Laser and Particle Beams, 2024, 36: 035002. doi: 10.11884/HPLPB202436.240003
Citation: Li Zi, Zhang Di, Jiang Song, et al. Research on two-channel high-voltage pulse generator with reverse bias voltage[J]. High Power Laser and Particle Beams, 2024, 36: 035002. doi: 10.11884/HPLPB202436.240003

带反偏置的双路高压脉冲电源的研究

doi: 10.11884/HPLPB202436.240003
基金项目: 国家自然科学基金项目(12205192); 姑苏青年领军人才项目(ZXL2023210)
详细信息
    作者简介:

    李 孜,lz7209@126.com

    通讯作者:

    饶俊峰,raojunfeng1985@163.com

  • 中图分类号: TM832

Research on two-channel high-voltage pulse generator with reverse bias voltage

  • 摘要: 通过调节反向偏置电压可以改善电场渗透对质谱仪的影响,提高质谱仪的分辨率。为了满足质谱仪对脉冲电场的不同要求,提出了一种可以同时输出两路极性相反脉冲电场的脉冲电源,且高压正脉冲叠加幅值可调的直流负偏置电压。该电源只需一个充电源便可以产生正负两路脉冲电场。分析了串联开关同步驱动效果,随后通过增加补偿绕组和并联电阻优化了串联电容的分压不均的问题,并验证一个磁芯加多个副边绕组的方案可进一步降低充电电压不均。最终实现了4个电容器的充电电压与平均电压相差不超过0.1%。搭建了一台4级的电源样机,实验表明,其可以在容性负载上产生一路幅值为0~1.5 kV、脉宽为2~10 µs可调的高压正脉冲且叠加幅值为0~−200 V的反向偏置电压,和一路幅值为0~−1.5 kV、脉宽为2~10 µs可调的高压负脉冲,频率高达10 kHz,正负脉冲的前沿均小于30 ns,脉冲波形平稳。该脉冲电源结构紧凑,并且输出电压、脉宽、频率均连续可调。
  • 图  1  全桥串联谐振充电电路原理图

    Figure  1.  Schematic of H-bridge series resonant charging power supply

    图  2  高压放电回路和截尾回路

    Figure  2.  High voltage discharge loop and the truncation loops

    图  3  串联谐振充电电路的仿真结果

    Figure  3.  Simulation results of H-bridge series resonant charging circuit

    图  4  主电路仿真结果

    Figure  4.  Simulation results of main circuit

    图  5  四级MOSFET驱动电压波形

    Figure  5.  Waveforms of the gate voltage over four MOSFETs

    图  6  补偿绕组示意图

    Figure  6.  Schematic diagram of the compensation windings

    图  7  谐振充电电路和主电路输出实验结果图

    Figure  7.  Experimental waveform of H-bridge series resonant charging circuit and main circuit

    图  8  负载电压前沿输出波形

    Figure  8.  Voltage front edge output waveforms of load

    图  9  10 kHz重频脉冲电压波形

    Figure  9.  Waveforms of 10 kHz repetitive voltage pulses

    图  10  带反压偏置的双路高压脉冲电源40 pF容性负载上的电压波形

    Figure  10.  Voltage waveforms of 40 pF capacitive load in pulse generator with reverse bias voltage

    表  1  带反偏置的双路高压脉冲电源参数

    Table  1.   Parameters of dual high-voltage pulsed power supply with reverse bias voltage

    Tr/ns Tf/ns T/μs width/μs Td/μs Cload/μF Lr/μH Cr/μF
    H-bridge series resonant drive signal 50 50 50 20 5 1225 5.1 2.7
    main circuit drive signal (S1,S4) 64 22 100 9 1 0.040
    下载: 导出CSV
  • [1] 刘钟阳, 吴彦, 王宁会. 双极性窄脉冲介质阻挡放电合成臭氧的研究[J]. 高电压技术, 2001, 27(2):28-29,38

    Liu Zhongyang, Wu Yan, Wang Ninghui. Experimental study on ozone synthesis in dielectric barrier discharge triggered by bipolar narrow pulse[J]. High Voltage Engineering, 2001, 27(2): 28-29,38
    [2] Shao Tao, Liu Feng, Hai Bin, et al. Surface modification of epoxy using an atmospheric pressure dielectric barrier discharge to accelerate surface charge dissipation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1557-1565. doi: 10.1109/TDEI.2017.006321
    [3] Samaranayake W J M, Miyahara Y, Namihira T, et al. Pulsed streamer discharge characteristics of ozone production in dry air[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(2): 254-260. doi: 10.1109/94.841818
    [4] Shao Tao, Jiang Hui, Zhang Cheng, et al. Time behaviour of discharge current in case of nanosecond-pulse surface dielectric barrier discharge[J]. Europhysics Letters, 2013, 101: 45002. doi: 10.1209/0295-5075/101/45002
    [5] 袁雪林, 梁步阁, 吕波, 等. 探地雷达高功率高稳定度脉冲源设计[J]. 强激光与粒子束, 2007, 19(10):1689-1692

    Yuan Xuelin, Liang Buge, Lü Bo, et al. High-power and high-stability pulser for ground penetrating radar[J]. High Power Laser and Particle Beams, 2007, 19(10): 1689-1692
    [6] Zhang C H, Lü P, Zhao Yongpeng, et al. Xenon discharge-produced plasma radiation source for EUV lithography[J]. IEEE Transactions on Industry Applications, 2010, 46(4): 1661-1666. doi: 10.1109/TIA.2010.2051059
    [7] Karataev V I, Mamyrin B A, Shmikk D V. New method for focusing ion bunches in time-of-flight mass spectrometers[J]. Soviet Physics Technical Physics, 1972, 16(7): 1177-1179.
    [8] 郭长娟, 黄正旭, 陈华勇, 等. 飞行时间质谱仪国内研究状况及发展趋势[J]. 现代仪器, 2007, 13(4):1-5

    Guo Changjuan, Huang Zhengxu, Chen Huayong, et al. The develoment and status of domestic time-of-flight mass spectrometer[J]. Modern Instruments, 2007, 13(4): 1-5
    [9] Guilhaus M. Essential elements of time-of-flight mass spectrometry in combination with the inductively coupled plasma ion source[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(10): 1511-1525. doi: 10.1016/S0584-8547(00)00261-5
    [10] 林一明, 盛凯旋, 李灵锋, 等. 用于飞行时间质谱仪的高压延时脉冲串发生器的研制[J]. 中国科技论文在线, 2008, 3(6):409-414

    Lin Yiming, Sheng Kaixuan, Li Lingfeng, et al. Development of the high voltage delay-time pulse train generator for time-of-flight mass spectrometer[J]. Sciencepaper Online, 2008, 3(6): 409-414
    [11] 叶启亮, 胡帆, 孙宁, 等. 离子富集脉冲电源对提高飞行时间质谱仪灵敏度的影响[J]. 分析测试学报, 2014, 33(10):1166-1172

    Ye Qiliang, Hu Fan, Sun Ning, et al. Effect of ion enrichment pulse power on sensitivity improvement of time-of-flight mass spectrometry[J]. Journal of Instrumental Analysis, 2014, 33(10): 1166-1172
    [12] Li Zi, Wang Xiaoyue, Jiang Song, et al. Research on the bipolar microsecond pulse generator using the multistage resonant charging[J]. IEEE Transactions on Plasma Science, 2022, 50(1): 109-115. doi: 10.1109/TPS.2021.3133504
    [13] 饶俊峰, 汪文超, 石富坤, 等. 自触发驱动的双极性脉冲叠加器[J]. 高电压技术, 2023, 49(8):3258-3267

    Rao Junfeng, Wang Wenchao, Shi Fukun, et al. A self-triggering bipolar pulse adder[J]. High Voltage Engineering, 2023, 49(8): 3258-3267
    [14] 张瑜. 垂直引入反射式飞行时间质谱仪的电源系统设计与实现[D]. 阜阳: 阜阳师范大学, 2021: 1-3

    Zhang Yu. The power system of the reflection-type time-of-flight mass spectrometer introduced vertically is designed and implemented[D]. Fuyang: Fuyang Normal University, 2021: 1-3
    [15] 王冬冬. 串联谐振电容器充电电源的研制[D]. 武汉: 华中科技大学, 2008: 26-29

    Wang Dongdong. The research and development of series resonant capacitor charging power supply[D]. Wuhan: Huazhong University of Science and Technology, 2008: 26-29
    [16] 焦毅, 姜松, 王永刚, 等. 小型化电感隔离型Marx发生器的研制[J]. 强激光与粒子束, 2023, 35:055002 doi: 10.11884/HPLPB202335.220291

    Jiao Yi, Jiang Song, Wang Yonggang, et al. Development of miniaturized inductor-isolated Marx generator[J]. High Power Laser and Particle Beams, 2023, 35: 055002 doi: 10.11884/HPLPB202335.220291
    [17] 嵇保健, 王若冰, 洪峰, 等. 基于Marx电路的纳秒级高压脉冲电源设计[J]. 高电压技术, 2016, 42(12):3758-3762

    Ji Baojian, Wang Ruobing, Hong Feng, et al. Design of nanosecond high-voltage pulsed power source based on Marx generator[J]. High Voltage Engineering, 2016, 42(12): 3758-3762
    [18] Chubarov O V, Alimov A S, Shvedunov V I. A compact industrial CW electron linac[J]. IEEE Transactions on Nuclear Science, 1997, 44(3): 1037-1039. doi: 10.1109/23.603800
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  40
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-02-01
  • 录用日期:  2024-02-01
  • 网络出版日期:  2024-02-22
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回