留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2.7~3.0 μm波段高反镜反射率测量研究

周文超 魏千翯 彭琛 黄德权 朱日宏

周文超, 魏千翯, 彭琛, 等. 2.7~3.0 μm波段高反镜反射率测量研究[J]. 强激光与粒子束, 2024, 36: 011002. doi: 10.11884/HPLPB202436.240014
引用本文: 周文超, 魏千翯, 彭琛, 等. 2.7~3.0 μm波段高反镜反射率测量研究[J]. 强激光与粒子束, 2024, 36: 011002. doi: 10.11884/HPLPB202436.240014
Zhou Wenchao, Wei Qianhe, Peng Chen, et al. Reflectivity measurement of highly reflective mirrors at spectral band of 2.7−3.0 μm[J]. High Power Laser and Particle Beams, 2024, 36: 011002. doi: 10.11884/HPLPB202436.240014
Citation: Zhou Wenchao, Wei Qianhe, Peng Chen, et al. Reflectivity measurement of highly reflective mirrors at spectral band of 2.7−3.0 μm[J]. High Power Laser and Particle Beams, 2024, 36: 011002. doi: 10.11884/HPLPB202436.240014

2.7~3.0 μm波段高反镜反射率测量研究

doi: 10.11884/HPLPB202436.240014
详细信息
    作者简介:

    周文超,zwc0710@126.com

  • 中图分类号: TN247

Reflectivity measurement of highly reflective mirrors at spectral band of 2.7−3.0 μm

  • 摘要: 中红外激光领域广泛使用高性能高反射光学元件,高反射率高精度测试技术是制备高性能反射光学元件的基础。针对2.7~3.0 μm波段光学元件高反射率测量的实际需求,基于量子级联激光器建立了连续光腔衰荡反射率测试实验装置,通过优选2.7~3.0 μm波段反射带内水汽吸收较弱的测试波长,分析空气中水汽吸收对衰荡时间和反射率测量的影响,并比较空气和氮气环境下反射率测量结果,实现了2.7~3.0 μm波段高反镜反射率的准确测量,在反射率约99.95%时绝对测量精度优于2×10−5。实验结果显示,采用测试波长2.9 μm并在测量时保证初始腔和测试腔腔长相同,无需使用氮气环境,直接在实验室空气环境可实现高反射率的精确测量。
  • 图  1  常温常压下空气中水汽的吸收谱线图

    Figure  1.  Absorption spectrum of water vapor in air at 296 K temperature and 0.1 MPa pressure

    图  2  实验装置图。AOM:声光调制器

    Figure  2.  Schematic diagram of experimental setup for high reflectivity measurement at 2.9 μm. AOM: Acoustic-Optic Modulator

    图  3  典型光腔衰荡信号及其单指数拟合曲线

    Figure  3.  A typical cavity ring-down signal and the corresponding single-exponential fit measured at 2.9 μm

    图  4  充氮气过程中衰荡时间的实时变化

    Figure  4.  Ring-down time evolution measured during N2 purging

    图  5  腔镜表观反射率与初始腔腔长的关系

    Figure  5.  Average nominal reflectivity of the cavity mirrors measured versus the cavity length of the initial cavity

    图  6  空气和氮气环境下测量的高反镜反射率与腔长的关系

    Figure  6.  Reflectivity measurement of a highly reflective mirror at different cavity lengths with and without N2 purging

  • [1] 程乃俊, 李惟帆, 祁峰. 中红外激光器研究进展[J]. 激光与光电子学进展, 2023, 60:1700006

    Cheng Naijun, Li Weifan, Qi Feng. Progress of mid-infrared laser[J]. Laser & Optoelectronics Progress, 2023, 60: 1700006
    [2] Vitiello M S, Scalari G, Williams B, et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 2015, 23(4): 5167-5182. doi: 10.1364/OE.23.005167
    [3] Quan C, Sun D L, Zhang H L, et al. 13-W and 1000-Hz of a 2.7-μm laser on the 968 nm LD side-pumped Er: YAP crystal with concave end-faces[J]. Optics Express, 2021, 29(14): 21655-21663. doi: 10.1364/OE.428874
    [4] Chen T T, Li J, Yuan J L, et al. 3 μm Watt-level all-fiber lasers based on mid-IR dielectric-coated fiber mirrors[J]. Journal of Lightwave Technology, 2023, 41(1): 249-254. doi: 10.1109/JLT.2022.3211927
    [5] 马连英, 周松青, 黄超, 等. 非链式重复频率HF激光器激光介质净化技术[J]. 强激光与粒子束, 2018, 30:051003 doi: 10.11884/HPLPB201830.170313

    Ma Lianying, Zhou Songqing, Huang Chao, et al. Purifying technology for non-chain discharge-pumped HF laser media at high frequency[J]. High Power Laser and Particle Beams, 2018, 30: 051003 doi: 10.11884/HPLPB201830.170313
    [6] 郭建增, 王杰, 赵海涛, 等. 连续波氟化氢激光输出光谱特性研究[J]. 激光与光电子学进展, 2018, 55:021404

    Guo Jianzeng, Wang Jie, Zhao Haitao, et al. Output spectrum of continuous wave hydrogen fluoride laser[J]. Laser & Optoelectronics Progress, 2018, 55: 021404
    [7] Fried W A, Chan K H, Darling C L, et al. Use of a DPSS Er: YAG laser for the selective removal of composite from tooth surfaces[J]. Biomedical Optics Express, 2018, 9(10): 5026-5036. doi: 10.1364/BOE.9.005026
    [8] Borri S, Insero G, Santambrogio G, et al. High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers[J]. Applied Physics B, 2019, 125: 18.
    [9] Walsh B M, Lee H R, Barnes N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405. doi: 10.1016/j.jlumin.2015.03.004
    [10] 许晓军. 高能激光六十年: 回顾与展望[J]. 强激光与粒子束, 2020, 32:011007 doi: 10.11884/HPLPB202032.0480

    Xu Xiaojun. Retrospect and prospect on 60-year development of high energy laser[J]. High Power Laser and Particle Beams, 2020, 32: 011007 doi: 10.11884/HPLPB202032.0480
    [11] 李定, 熊胜明. 离子束溅射氧化物薄膜的中红外特性[J]. 中国激光, 2015, 42:0107002 doi: 10.3788/CJL201542.0107002

    Li Ding, Xiong Shengming. Mid-infrared properties of oxide coatings prepared by ion beam sputtering deposition[J]. Chinese Journal of Lasers, 2015, 42: 0107002 doi: 10.3788/CJL201542.0107002
    [12] Rudisill J E, Lohneiss W H, Jeffers W Q. Ultralow absorption coatings for mid-infrared cw lasers[C]. Proceedings of the SPIE 2253, Optical Interference Coatings. 1994: 802-808.
    [13] Gordon I E, Rothman L S, Hargreaves R J, et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277: 107949. doi: 10.1016/j.jqsrt.2021.107949
    [14] Zeng T T, Zhu M P, Chai Y J, et al. Effects of water adsorption on properties of electron-beam HfO2/SiO2 high-reflection coatings[J]. Thin Solid Films, 2020, 697: 137826. doi: 10.1016/j.tsf.2020.137826
    [15] Dekkers H F W, Gallo A, Van Elshocht S. Infrared molar absorption coefficient of H2O stretching modes in SiO2[J]. Thin Solid Films, 2013, 542: 8-13. doi: 10.1016/j.tsf.2013.05.151
    [16] 李斌成, 龚元. 光腔衰荡高反射率测量技术综述[J]. 激光与光电子学进展, 2010, 47:021203

    Li Bincheng, Gong Yuan. Review of cavity ring-down techniques for high reflectivity measurements[J]. Laser & Optoelectronics Progress, 2010, 47: 021203
    [17] 高丽峰, 熊胜明, 李斌成, 等. 用光腔衰荡技术测量镜片的反射率[J]. 强激光与粒子束, 2005, 17(3):335-338

    Gao Lifeng, Xiong Shengming, Li Bincheng, et al. Analysis of reflectivity measurement by cavity ring-down spectroscopy[J]. High Power Laser and Particle Beams, 2005, 17(3): 335-338
    [18] ISO 13142: 2015, Optics and photonics – lasers and laser-related equipment – cavity ring-down method for high-reflectance and high-transmittance measurement[S
    [19] Xiao Shilei, Li Bincheng, Wang Jing. Precise measurements of super-high reflectance with cavity ring-down technique[J]. Metrologia, 2020, 57: 055002. doi: 10.1088/1681-7575/ab9d2d
    [20] Cui Hao, Li Bincheng, Han Yanling, et al. Extinction measurement with open-path cavity ring-down technique of variable cavity length[J]. Optics Express, 2016, 24(12): 13343-13350. doi: 10.1364/OE.24.013343
    [21] Winkler G, Perner L W, Truong G W, et al. Mid-infrared interference coatings with excess optical loss below 10 ppm[J]. Optica, 2021, 8(5): 686-696. doi: 10.1364/OPTICA.405938
  • 加载中
图(6)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  51
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-10
  • 修回日期:  2024-01-12
  • 录用日期:  2024-01-15
  • 网络出版日期:  2024-01-17
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回