留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精度固态调制器绝缘栅双极晶体管驱动电路

石秀倩 何大勇 李飞 甘楠 牟雅洁 李京祎

石秀倩, 何大勇, 李飞, 等. 高精度固态调制器绝缘栅双极晶体管驱动电路[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240031
引用本文: 石秀倩, 何大勇, 李飞, 等. 高精度固态调制器绝缘栅双极晶体管驱动电路[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240031
Shi Xiuqian, He Dayong, Li Fei, et al. Insulated gate bipolar transistor drive circuit of high pulse repetition precision solid state modulator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240031
Citation: Shi Xiuqian, He Dayong, Li Fei, et al. Insulated gate bipolar transistor drive circuit of high pulse repetition precision solid state modulator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240031

高精度固态调制器绝缘栅双极晶体管驱动电路

doi: 10.11884/HPLPB202436.240031
基金项目: 中国科学院高能物理研究所科技创新项目;国家重大科技基础设施项目(发改高技﹝2017﹞2173号)
详细信息
    作者简介:

    石秀倩,E-mail:shixq@ihep.ac.cn

    通讯作者:

    何大勇,E-mail: hedy@ihep.ac.cn

    李京祎,E-mail: jingyili@ihep.ac.cn

  • 中图分类号: TN787

Insulated gate bipolar transistor drive circuit of high pulse repetition precision solid state modulator

  • 摘要: 加法器式固态调制器是一种使用绝缘栅双极晶体管(IGBT)控制储能电容放电来产生脉冲高压的装置,相比传输线型调制器,具有模块化、稳定性好、寿命长等优势。但IGBT的正常工作需要利用栅极驱动电路将控制信号进行放大才能实现,驱动电路的性能直接影响IGBT的开关特性,最终影响脉冲电压质量,尤其是驱动电路的导通抖动指标,这是影响脉冲电压精度的关键因素之一。根据加法器式固态调制器中IGBT的工作特性,以提高脉冲电压精度为目标,对驱动电路进行研究。分析了开关抖动对输出电压精度的影响,介绍了设计原理,研制了驱动电路板,并利用放电模块对其工作性能进行了实验测试。测试结果表明,该款驱动电路的导通抖动为300 ps,相比1 ns的商用驱动电路抖动压缩至1/3,在1 kV充电电压下,放电模块在0.5 Ω的负载上放电,形成上升时间为500 ns、导通抖动峰、峰值在5 ns以下的脉冲电压,当发生退饱和故障时,驱动电路能够在4 µs时间内关断IGBT,该款驱动电路满足高精度固态调制器的工作要求。
  • 图  1  加法器式固态调制器的系统结构

    Figure  1.  System structure of adder topology solid-state modulator

    图  2  加法器式固态调制器系统的等效电路

    Figure  2.  Equivalent circuit of adder topology solid-state modulator system

    图  3  IGBT驱动电路的总体方案

    Figure  3.  Overall scheme of IGBT driving circuit

    图  4  降压式(buck)变换器外围电路

    Figure  4.  Peripheral circuit of buck converter

    图  5  栅极驱动电路

    Figure  5.  Gate drive circuit

    图  6  保护电路

    Figure  6.  Protection circuit

    图  7  自身响应的测试环境

    Figure  7.  Environment for response testing

    图  8  自身响应的测试结果

    Figure  8.  Results of response testing

    图  9  驱动IGBT能力的测试环境

    Figure  9.  Environment for driving IGBT capability testing

    图  10  驱动IGBT能力的测试结果

    Figure  10.  Results of driving IGBT capability testing

    图  11  退饱和保护测试结果

    Figure  11.  Desaturation protection test results

    图  12  不同充电电压下负载上的脉冲波形图

    Figure  12.  Pulse waveform on load under different charging voltages

    表  1  实验测试结果

    Table  1.   Results of experiments

    rise
    time/ns
    fall
    time/ns
    turn-on delay
    time/ns
    turn-off delay
    time/ns
    turn-on jitter
    (STD)/ps
    turn-on jitter
    (PK-PK)/ns
    output waveform of the driver board 86.513 52.562 604.253 510.029 300 2.174
    load waveform at 1 kV charging voltage 504.585 333.596 1321.793 1703.321 730 4.899
    下载: 导出CSV
  • [1] 魏智. 发射机高压脉冲调制器的设计与实践[M]. 北京: 电子工业出版社, 2009

    Wei Zhi. Design and practice of transmitter high voltage pulse modulator[M]. Beijing: Publishing House of Electronics Industry, 2009
    [2] Takayama K. Stability of a klystron-type free-electron laser in the steady-state regime: macroparticle approach[J]. Physical Review Letters, 1989, 63(5): 516-519. doi: 10.1103/PhysRevLett.63.516
    [3] Oh J S, Inagaki T, Shirasawa K, et al. Stable RF phase insensitive to the modulator voltage fluctuation of the C-band main linac for SCSS XFEL[C]//Proceedings of FEL. 2006: 684-687.
    [4] Liu Yongfang, Matsumoto H, Li Lin, et al. Analysis the influence of pulse-to-pulse stability of modulator on high-power microwave output of pulsed klystron[J]. SN Applied Sciences, 2022, 4: 4. doi: 10.1007/s42452-021-04889-7
    [5] 张建华, 尚雷, 王旭明, 等. 130MW大功率线型脉冲调制器的设计与研究[J]. 雷达科学与技术, 2013, 11(1):87-91,96 doi: 10.3969/j.issn.1672-2337.2013.01.016

    Zhang Jianhua, Shang Lei, Wang Xuming, et al. Design of 130 MW high power pulse modulator[J]. Radar Science and Technology, 2013, 11(1): 87-91,96 doi: 10.3969/j.issn.1672-2337.2013.01.016
    [6] 奚基伟. BEPC及BES和BSRF的改进[J]. 现代物理知识, 1996, 7(3):49

    Xi Jiwei. Improvement of BEPC, BES, and BSRF[J]. Modern Physics, 1996, 7(3): 49
    [7] Shen Li, Chi Yunlong, Dai Qunming, et al. The modulator stability system for the BEPCII klystron[C]//Proceedings of the IEEE Particle Accelerator Conference (PAC). 2007: 2137-2139.
    [8] Shang L, Wang W, Hong J, et al. The upgrading of HLS Linac modulators[C]//Proceedings of LINAC. 2002: 434-436.
    [9] 刘永芳. 紧凑型高性能脉冲调制器的研究[D]. 上海: 中国科学院上海应用物理研究所, 2019

    Liu Yongfang. Study of a compact and high-performance pulse modulator[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019
    [10] 王丽玮, 谷鸣, 袁启兵. 脉冲调制器稳定性监控中的数据采集与处理[J]. 核技术, 2012, 35(7):543-548

    Wang Liwei, Gu Ming, Yuan Qibing. Data acquisition and processing in stability control system of LINAC modulator[J]. Nuclear Techniques, 2012, 35(7): 543-548
    [11] 梁琳, 余岳辉. 半导体脉冲功率开关发展综述[J]. 电力电子技术, 2012, 46(12):42-45

    Liang Lin, Yu Yuehui. Review on development of semiconductor pulsed power switches[J]. Power Electronics, 2012, 46(12): 42-45
    [12] 袁昊, 张康益, 徐策, 等. 基于调制器IGBT的高压大脉冲技术[J]. 电子技术与软件工程, 2017(21):85-86

    Yuan Hao, Zhang Kangyi, Xu Ce, et al. High voltage and large pulse technology based on modulator IGBT[J]. Electronic Technology & Software Engineering, 2017(21): 85-86
    [13] 饶俊峰. 基于固态开关的重复频率脉冲功率源的脉冲调制技术及其应用[D]. 上海: 复旦大学, 2013

    Rao Junfeng. Pulse modulation technology of repetitive frequency pulse power source based on solid state switch and its application[D]. Shanghai: Fudan University, 2013
    [14] 李运海, 郭翔, 杨荣, 等. 50 MW速调管用分数比脉冲调制器[J]. 强激光与粒子束, 2021, 33:095002 doi: 10.11884/HPLPB202133.210220

    Li Yunhai, Guo Xiang, Yang Rong, et al. Fractional-turn ratio solid-state modulator for 50 MW klystron[J]. High Power Laser and Particle Beams, 2021, 33: 095002 doi: 10.11884/HPLPB202133.210220
    [15] 杨景红, 郑新, 钱锰. 加法器结构的大功率固态脉冲调制器的研究[J]. 现代雷达, 2009, 31(4):80-83 doi: 10.3969/j.issn.1004-7859.2009.04.019

    Yang Jinghong, Zheng Xin, Qian Meng. A study on high-power solid-state pulse modulator of adder topology[J]. Modern Radar, 2009, 31(4): 80-83 doi: 10.3969/j.issn.1004-7859.2009.04.019
    [16] 许欢, 张宫旭, 陈龙, 等. 一种提升高压脉冲调制器输出电压稳定度的方法: 116780933A[P]. 2023-09-19

    Xu Huan, Zhang Gongxu, Chen Long, et al. A method to improve the stability of the output voltage of high-voltage pulse modulators: 116780933A[P]. 2023-09-19
    [17] Meng Cai, He Xiang, Jiao Yi, et al. Physics design of the HEPS LINAC[J]. Radiation Detection Technology and Methods, 2020, 4(4): 497-506. doi: 10.1007/s41605-020-00205-w
    [18] 孟才, 曹建社, 何大勇, 等. 高能同步辐射光源直线加速器初期调束取得重要进展[J]. 强激光与粒子束, 2023, 35:054001 doi: 10.11884/HPLPB202335.230061

    Meng Cai, Cao Jianshe, He Dayong, et al. Progress of the first-stage beam commissioning of High Energy Photon Source Linac[J]. High Power Laser and Particle Beams, 2023, 35: 054001 doi: 10.11884/HPLPB202335.230061
    [19] Lobsiger Y, Kolar J W. Closed-loop di/dt and dv/dt IGBT gate driver[J]. IEEE Transactions on Power Electronics, 2015, 30(6): 3402-3417. doi: 10.1109/TPEL.2014.2332811
    [20] Volke A, Hornkamp M. IGBT modules: technologies, driver and application[M]. Munich, Germany: Infineon Technologies AG, 2011.
    [21] Grbovic P J. An IGBT gate driver for feed-forward control of turn-on losses and reverse recovery current[J]. IEEE Transactions on Power Electronics, 2008, 23(2): 643-652. doi: 10.1109/TPEL.2007.915621
    [22] 朱晓光, 张政权, 刘庆想, 等. 脉冲功率应用的IGBT快速驱动电路[J]. 强激光与粒子束, 2018, 30:015001 doi: 10.11884/HPLPB201830.170330

    Zhu Xiaoguang, Zhang Zhengquan, Liu Qingxiang, et al. High speed IGBT gate driving circuit applied to pulsed power system[J]. High Power Laser and Particle Beams, 2018, 30: 015001 doi: 10.11884/HPLPB201830.170330
    [23] 高杰, 张华剑, 高大庆, 等. HIAF-Kicker电源开关同步驱动电路设计[J]. 核电子学与探测技术, 2018, 38(5):625-629 doi: 10.3969/j.issn.0258-0934.2018.05.006

    Gao Jie, Zhang Huajian, Gao Daqing, et al. Synchronous triggering circuit design for HIAF-Kicker power[J]. Nuclear Electronics & Detection Technology, 2018, 38(5): 625-629 doi: 10.3969/j.issn.0258-0934.2018.05.006
    [24] 江进波, 陈锐, 赵青, 等. 脉冲变压器驱动SiC MOSFET型Marx同步特性[J]. 强激光与粒子束, 2023, 35:085002 doi: 10.11884/HPLPB202335.230108

    Jiang Jinbo, Chen Rui, Zhao Qing, et al. Synchronous characteristics of SiC MOSFET driven by pulse transformer for Marx generator[J]. High Power Laser and Particle Beams, 2023, 35: 085002 doi: 10.11884/HPLPB202335.230108
    [25] Huang Chenxing, Saethre R, Melcher P, et al. Low jitter and drift high voltage IGBT gate driver[C]//Proceedings of the 14th IEEE International Pulsed Power Conference (PPC). 2003: 127-130.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  30
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-03-12
  • 录用日期:  2024-03-12
  • 网络出版日期:  2024-03-21

目录

    /

    返回文章
    返回