留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络特征线提取的飞机位姿识别方法研究

陈长俊 唐丹 杨浩 游安清 潘旭东

陈长俊, 唐丹, 杨浩, 等. 基于神经网络特征线提取的飞机位姿识别方法研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240032
引用本文: 陈长俊, 唐丹, 杨浩, 等. 基于神经网络特征线提取的飞机位姿识别方法研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240032
Chen Changjun, Tang Dan, Yang Hao, et al. Research of aircraft pose estimation based on neural network feature line extraction[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240032
Citation: Chen Changjun, Tang Dan, Yang Hao, et al. Research of aircraft pose estimation based on neural network feature line extraction[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240032

基于神经网络特征线提取的飞机位姿识别方法研究

doi: 10.11884/HPLPB202436.240032
基金项目: 中国工程物理研究院创新发展基金项目(C-2021-CX20210023)
详细信息
    作者简介:

    陈长俊,chengchangjun21@gscaep.ac.cn

    通讯作者:

    唐 丹,278803565@qq.com

  • 中图分类号: TP391.4;TP751.1

Research of aircraft pose estimation based on neural network feature line extraction

  • 摘要: 为实现复杂情况下的飞机位姿识别,提出了基于神经网络特征线提取的位姿识别新方法。该方法利用3D模型进行图像渲染,通过添加背景形成数据集,为提高算法鲁棒性进行了数据集增强。特征线提取模型采用卷积神经网络提取目标深度特征,利用热力图获取飞机特征线。结合飞机特征线、飞机3D模型以及n线透视方法解算目标位姿。该方法建立的飞机特征线提取模型,在复杂背景下准确率约为91%。叠加了各类噪声后,准确率为84%。飞机位姿通过EPnL算法与非线性优化进行求解。在目标背景复杂的情况下,实验得到的平均预测角度误差约为0.57°,平均预测平移误差约为0.47%。图像叠加各类噪声后,得到的平均预测角度误差约为2.11°,平均预测平移误差约为0.93%。本文提出的飞机位姿识别方法在复杂背景、各类噪声影响下可以较精准的预测飞机位姿,应用场景更加广泛。
  • 图  1  增强效果

    Figure  1.  Enhancement effects

    图  2  神经网络检测头

    Figure  2.  Head of neural network

    图  3  机翼特征线热力图

    Figure  3.  Heatmap of wing characteristic line

    图  4  各坐标系关系图

    Figure  4.  Relation of different coordinate systems

    图  5  位姿解算算法测试结果

    Figure  5.  Test results of pose estimation algorithm

    图  6  位姿解算算法测试结果

    Figure  6.  Test results of pose estimation algorithm

    图  7  各类噪声影响下的模型预测误差

    Figure  7.  Estimation error under the effect of different noises

    图  8  不同情况下模型的预测误差与目标距离关系

    Figure  8.  Relation between distance and prediction error in different situations

    图  9  各阶段效果图

    Figure  9.  Images for each stage

    表  1  全连接检测头测试结果

    Table  1.   results of fully connected head

    No. output feature precision/%
    1 $ k,b $ 36.39
    2 $ k,d $ 71.35
    3 $ \theta ,b $ 18.57
    4 $ \theta ,d $ 73.15
    5 $ \theta ,x,y $ 76.56
    下载: 导出CSV

    表  2  不同骨架测试准确率

    Table  2.   precision of different backbones

    backbones precision/%
    type 1 type 2 type 3 type 4
    Resnet152[16] 85.37 83.25 75.54 74.33
    Resnext152[17] 86.75 88.29 79.21 78.13
    Hrnet48[18] 88.59 87.30 84.26 83.30
    Densenet201[19] 91.13 90.81 84.26 84.03
    Mobilenetv2[20] 84.02 82.26 74.93 72.37
    下载: 导出CSV

    表  3  不同情况下的平均预测误差

    Table  3.   Average error of pose estimation in different situations

    situation 7 lines model error/% 17 lines model error/%
    pure background 1.04 1(.24°) 0.52 (1.53°)
    complex background 1.05 (1.21°) 0.47 (0.57°)
    complex background and noises 3.49 (4.61°) 0.93 (2.11°)
    下载: 导出CSV
  • [1] 刘刚, 梁晓庚, 张京国. 基于红外图像的飞机目标关键攻击部位识别[J]. 计算机工程与应用, 2011, 47(24):174-177,228

    Liu Gang, Liang Xiaogeng, Zhang Jingguo. Recognizing airplane’s key attacking part based on infrared image[J]. Computer Engineering and Applications, 2011, 47(24): 174-177,228
    [2] 成杰, 李新德. 基于Hu矩与改进PNN的飞机姿态识别算法[J]. 航空兵器, 2017(1):55-61

    Cheng Jie, Li Xinde. An algorithm of aircraft pose recognition based on Hu moments and IPNN[J]. Aero Weaponry, 2017(1): 55-61
    [3] 王宏波, 庄志洪, 张清泰. 基于动态红外图像的飞机姿态识别方法研究[J]. 红外与激光工程, 2003, 32(1):8-12

    Wang Hongbo, Zhuang Zhihong, Zhang Qingtai. Study on recognition of aircraft status based on dynamic Infrared images[J]. Infrared and Laser Engineering, 2003, 32(1): 8-12
    [4] 王宏波, 庄志洪, 张清泰. 一种红外成像引信中的飞机姿态识别方法[J]. 宇航学报, 2003, 24(4):354-358 doi: 10.3321/j.issn:1000-1328.2003.04.006

    Wang Hongbo, Zhuang Zhihong, Zhang Qingtai. A recognizing method of aircraft status in imaging infrared fuze[J]. Journal of Astronautics, 2003, 24(4): 354-358 doi: 10.3321/j.issn:1000-1328.2003.04.006
    [5] 冀芳, 武瑞娟, 何红丽. 大型外挂物投放影像测量亚像素定位技术[J]. 计算机与数字工程, 2017, 45(8):1647-1651

    Ji Fang, Wu Ruijuan, He Hongli. Sub pixel positioning technology for large external store image measurement[J]. Computer and Digital Engineering, 2017, 45(8): 1647-1651
    [6] Santos N P, Melício F, Lobo V, et al. A ground-based vision system for UAV pose estimation[J]. International Journal of Robotics and Mechatronics, 2014, 1(4): 138-144.
    [7] Su Guozhong, Zhang Jianqing, Zheng Shunyi. Moving objects pose acquisition from image sequence[C]//Proceedings of the 20th ISPRS Congress Technical Commission V. 2004: 730-734.
    [8] 李兴唐, 郭立红. 基于三维模型的飞机识别与姿态估计[J]. 武汉理工大学学报, 2008, 30(8):74-77

    Li Xingtang, Guo Lihong. Aircraft recognition and pose estimation base on 3D model[J]. Journal of Wuhan University of Technology, 2008, 30(8): 74-77
    [9] 王习文, 马军, 陈娟, 等. 飞机三维姿态测量的角平分线方向向量法[J]. 光学 精密工程, 2010, 18(2):369-376

    Wang Xiwen, Ma Jun, Chen Juan, et al. Direction vector method of angle bisector lines for measuring aircraft’s 3D attitude[J]. Optics and Precision Engineering, 2010, 18(2): 369-376
    [10] 王彬, 何昕, 魏仲慧. 采用单目图像特征直线的飞机姿态估计[J]. 计算机测量与控制, 2013, 21(2):473-476 doi: 10.3969/j.issn.1671-4598.2013.02.061

    Wang Bin, He Xin, Wei Zhonghui. A method of measuring pose of aircraft from mono-view based on line features[J]. Computer Measurement & Control, 2013, 21(2): 473-476 doi: 10.3969/j.issn.1671-4598.2013.02.061
    [11] 王彬, 何昕, 魏仲慧. 采用多站图像直线特征的飞机姿态估计[J]. 光学 精密工程, 2013, 21(7):1831-1839 doi: 10.3788/OPE.20132107.1831

    Wang Bin, He Xin, Wei Zhonghui. Attitude estimation of aircrafts using line features on multi-camera images[J]. Optics and Precision Engineering, 2013, 21(7): 1831-1839 doi: 10.3788/OPE.20132107.1831
    [12] Teng Xichao, Yu Qifeng, Luo Jing, et al. 2019. Aircraft pose estimation based on geometry structure features and line correspondences[J]. Sensors, 2019, 19: 2165. doi: 10.3390/s19092165
    [13] Li Yibo, Yu Ruixing, Zhu Bing. 2D-key-points-localization-driven 3D aircraft pose estimation[J]. IEEE Access, 2020, 8: 181293-181301. doi: 10.1109/ACCESS.2020.3026209
    [14] Fan Runze, Xu Tingbing, Wei Zhenzhong. Estimating 6D aircraft pose from keypoints and structures[J]. Remote Sensing, 2021, 13: 663. doi: 10.3390/rs13040663
    [15] 王平, 何卫隆, 张爱华, 等. EPnL: 一种高效且精确的PnL问题求解算法[J]. 自动化学报, 2022, 48(10):2600-2610

    Wang Ping, He Weilong, Zhang Aihua, et al. EPnL: an efficient and accurate algorithm to the PnL problem[J]. Acta Automatica Sinica, 2022, 48(10): 2600-2610
    [16] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
    [17] Xie Saining, Girshick R, Dollár R, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5987-5995.
    [18] Sun Ke, Xiao Bin, Liu Dong, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 5686-5696.
    [19] Huang Gao, Liu Zhuang, Van Der Maaten L. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2261-2269.
    [20] Sandler M, Howard A, Zhu Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 4510-4520.
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  24
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-03-06
  • 录用日期:  2024-02-28
  • 网络出版日期:  2024-03-15

目录

    /

    返回文章
    返回