留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低抖动激光触发伪火花开关的研究

杨铭杰 杨鸿飞 张明 瞿波

杨铭杰, 杨鸿飞, 张明, 等. 低抖动激光触发伪火花开关的研究[J]. 强激光与粒子束, 2024, 36: 035003. doi: 10.11884/HPLPB202436.240033
引用本文: 杨铭杰, 杨鸿飞, 张明, 等. 低抖动激光触发伪火花开关的研究[J]. 强激光与粒子束, 2024, 36: 035003. doi: 10.11884/HPLPB202436.240033
Yang Mingjie, Yang Hongfei, Zhang Ming, et al. Study of low-jitter laser-triggered pseudo-spark switches[J]. High Power Laser and Particle Beams, 2024, 36: 035003. doi: 10.11884/HPLPB202436.240033
Citation: Yang Mingjie, Yang Hongfei, Zhang Ming, et al. Study of low-jitter laser-triggered pseudo-spark switches[J]. High Power Laser and Particle Beams, 2024, 36: 035003. doi: 10.11884/HPLPB202436.240033

低抖动激光触发伪火花开关的研究

doi: 10.11884/HPLPB202436.240033
详细信息
    作者简介:

    杨铭杰,976689742@qq.com

  • 中图分类号: TN134

Study of low-jitter laser-triggered pseudo-spark switches

  • 摘要: 伪火花开关已经成功地应用于各种脉冲功率应用,包括欧洲大型强子对撞机、反导雷达系统、航空发动机点火等。对于这样的应用,降低开关的延迟和抖动来提升稳定性是非常重要的。设计了一种激光触发伪火花开关,使用波长532 nm的激光,在不同气压、工作电压和触发能量下,测试激光触发伪火花开关的阳极着火延迟时间和抖动两项参数。测试结果表明,增加激光能量可以降低开关的延迟和抖动,实现开关稳定性的激光能量阈值在1.5 mJ,可以使得开关的抖动小于1 ns,继续增大触发能量,开关的延迟和抖动不再明显变化;此外,增大管内的氢气压强可降低开关的延迟和抖动;当触发能量足够大时,改变阳极电压,开关的延迟和抖动不随开关电压而改变。
  • 图  1  激光触发伪火花开关典型结构

    Figure  1.  Typical structure of pseudospark switch

    图  2  激光触发伪火花开关的结构示意图和实物图

    Figure  2.  Structure diagram and photo of a laser-triggered pseudospark switch

    图  3  激光触发伪火花开关光路示意图

    Figure  3.  Schematic diagram of laser-triggered pseudo-spark switch optical circuit

    图  4  测试电路图及实物图

    Figure  4.  Test circuit and photo of the test platform

    图  5  激光触发脉冲与电极电压图

    Figure  5.  Laser trigger pulse vs electrode voltage

    图  6  激光能量与开关延迟时间的关系

    Figure  6.  Laser energy vs switching delay time

    图  7  不同氢压下激光能量与开关延迟时间的关系

    Figure  7.  Laser energy versus switching delay time at different hydrogen pressures

    图  8  不同工作电压下的延迟时间

    Figure  8.  Delay time at different operating voltages

    表  1  激光触发的延迟时间和抖动

    Table  1.   Delay time and jitter of focusing laser triggering

    Eλ/mJ τdelay/ns τjitter/ns
    1 2 3 4 5
    0.3 251 274 271 283 259 10.1
    0.5 160 162 150 158 160 3.2
    0.9 102 106 107 110 105 2
    1.5 64 64 64 64 64 <1
    2 52 52 52 52 52 <1
    下载: 导出CSV

    表  2  不同电压下不同激光能量的延迟时间

    Table  2.   Delay time for different laser energies at different voltages

    Ua/kV τdelay/ns
    0.15 mJ 0.2 mJ 0.3 mJ 0.5 mJ 0.9 mJ 1.5 mJ 2 mJ 3 mJ 5 mJ 7 mJ 10 mJ 13 mJ 15 mJ
    8 300 175 100 78 61 53 53 53 53 53 53 53 53
    5 1000 600 268 158 106 64 52 52 52 52 52 52 52
    3 700 400 330 290 239 95 62 57 51 51 51 51
    2 606 522 440 300 95 75 66 60 60 60 60
    1 1700 1680 1550 1500 1200 930 98 70 56 56 56
    0.5 106 81 60 60 60
    0.2 71 58 58
    下载: 导出CSV
  • [1] 孙凤举, 邱爱慈, 姜晓峰, 等. 20MA/300ns Marx型直接驱动Z箍缩脉冲源[J]. 强激光与粒子束, 2012, 24(4):933-937 doi: 10.3788/HPLPB20122404.0933

    Sun Fengju, Qiu Aici, Jiang Xiaofeng, et al. 20 MA/300 ns direct-driven Z-pinch Marx-based pulsed power driver[J]. High Power Laser and Particle Beams, 2012, 24(4): 933-937 doi: 10.3788/HPLPB20122404.0933
    [2] Ducimetiere L, Jansson U, et al. Pseudo-spark switch development for the LHC extraction kicker pulse generator[R]. LHC Projekt Report 56. http://preprintscernch/archive/electronic/cern/preprints/lhc/lhc-projectreport-56.
    [3] Kuthi A, Eccles B, Yao Qingfang, et al. Advanced multi-gap pseudospark switch[C]//Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference. 2003: 946-949.
    [4] Gundersen M. Applications for compact portable pulsed power: rocket science, cancer therapy, and the movies[C]//Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium. 2006: 1-5.
    [5] Cathey C, Wang Fei, Tang Tao, et al. Transient plasma ignition for delay reduction in pulse detonation engines[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. 2007.
    [6] Sozer E B, Gundersen M A, Jiang Chunqi. Investigation of gaseous electron multiplier-based triggering of back-lighted thyratrons[C]//The 2010 IEEE International Power Modulator and High Voltage Conference. 2010: 553-555.
    [7] 高怀林, 张志强, 高冬平, 等. 高功率电磁脉冲产生技术与应用[J]. 中国科学: 物理学 力学 天文学, 2021, 51(9): 62-71

    Gao Huailin, Zhang Zhiqiang, Gao Dongping et al. Generation of high-power electromagnetic pulses and its application to radiation effect research: A review[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(9): 62-71
    [8] 吴刚, 贾伟, 王海洋, 等. 高空核电磁脉冲模拟器研制进展[J]. 中国科学: 物理学 力学 天文学, 2023, 53(7): 97-109

    Wu Gang, Jia Wei, Wang Haiyang, et al. Progress in developing high-altitude electromagnetic pulse simulators[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2023, 53(7): 97-109
    [9] Starikovskaia S M. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms[J]. Journal of Physics D:Applied Physics, 2014, 47: 353001. doi: 10.1088/0022-3727/47/35/353001
    [10] 于锦禄, 王思博, 黄丹青, 等. 等离子体点火技术在脉冲爆震发动机中的应用研究现状[J]. 航空科学技术, 2018, 29(10):1-10

    Yu Jinlu, Wang Sibo, Huang Danqing, et al. Application and research status of plasma ignition technology in pulse detonation engine[J]. Aeronautical Science & Technology, 2018, 29(10): 1-10
    [11] 陈思富, 黄子平, 石金水. 带电粒子加速器的基本类型及其技术实现[J]. 强激光与粒子束, 2020, 32(4):5-21 doi: 10.11884/HPLPB202032.190424

    Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32(4): 5-21 doi: 10.11884/HPLPB202032.190424
    [12] Wei Jie. Particle accelerator development: Selected examples[J]. Modern Physics Letters A, 2016, 31: 1630010.
    [13] Kutsaev S V. Advanced technologies for applied particle accelerators and examples of their use (review)[J]. Technical Physics, 2021, 66(2): 161-195. doi: 10.1134/S1063784221020158
    [14] 张明, 周亮, 栾小燕, 等. 面向脉冲功率技术需求的伪火花开关技术[J]. 真空电子技术, 2021(1):1-9

    Zhang Ming, Zhou Liang, Luan Xiaoyan, et al. Pseudo-spark switch technologies for pulsed power sources[J]. Vacuum Electronics, 2021(1): 1-9
    [15] 周亮, 张明, 孙承革. 激光触发伪火花开关的研究[J]. 强激光与粒子束, 2020, 32:035001 doi: 10.11884/HPLPB202032.190094

    Zhou Liang, Zhang Ming, Sun Chengge. Preliminary study of laser-triggered pseudospark switch[J]. High Power Laser and Particle Beams, 2020, 32: 035001 doi: 10.11884/HPLPB202032.190094
    [16] Sun Guoxiang, Wang Xia, Ding Weidong, et al. Study on pseudospark switch triggered by 532-nm focused laser[J]. IEEE Transactions on Electron Devices, 2023, 70(2): 765-770. doi: 10.1109/TED.2022.3229279
    [17] 闫家启, 申赛康, 孙国祥, 等. 伪火花放电的物理机制与应用综述[J]. 电工技术学报, 2021, 36(11):2408-2423

    Yan Jiaqi, Shen Saikang, Sun Guoxiang, et al. Review on physical mechanisms and applications of pseudospark discharge[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2408-2423
    [18] 赵征, 周亮, 栾小燕, 等. 新型小体积伪火花开关研制[J]. 强激光与粒子束, 2023, 35:035002 doi: 10.11884/HPLPB202335.220290

    Zhao Zheng, Zhou Liang, Luan Xiaoyan, et al. Development of miniature pseudo-spark switch[J]. High Power Laser and Particle Beams, 2023, 35: 035002 doi: 10.11884/HPLPB202335.220290
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  29
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-03-04
  • 录用日期:  2024-03-04
  • 网络出版日期:  2024-03-06
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回