留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于里德堡原子的无线电技术研究进展

贺青 李栋 谷立 罗思源 贺寓东 李彪 王强

贺青, 李栋, 谷立, 等. 基于里德堡原子的无线电技术研究进展[J]. 强激光与粒子束, 2024, 36: 079001. doi: 10.11884/HPLPB202436.240061
引用本文: 贺青, 李栋, 谷立, 等. 基于里德堡原子的无线电技术研究进展[J]. 强激光与粒子束, 2024, 36: 079001. doi: 10.11884/HPLPB202436.240061
He Qing, Li Dong, Gu Li, et al. Research progress in radio technology based on Rydberg atoms[J]. High Power Laser and Particle Beams, 2024, 36: 079001. doi: 10.11884/HPLPB202436.240061
Citation: He Qing, Li Dong, Gu Li, et al. Research progress in radio technology based on Rydberg atoms[J]. High Power Laser and Particle Beams, 2024, 36: 079001. doi: 10.11884/HPLPB202436.240061

基于里德堡原子的无线电技术研究进展

doi: 10.11884/HPLPB202436.240061
基金项目: 中国工程物理研究院院长基金自立项目(YZJJZL2023054)、电子工程研究所科技创新基金项目(J23-02)、国家自然科学基金青年科学基金项目(12104423)、四川省自然科学基金青年基金项目(2024NSFSC1431)
详细信息
    作者简介:

    贺 青,18583852658@163.com

    通讯作者:

    王 强,383703313@qq.com

  • 中图分类号: O43;TN99

Research progress in radio technology based on Rydberg atoms

  • 摘要: 近年来,量子信息技术飞速发展,其中基于里德堡原子的电磁传感器吸引了人们的极大兴趣。里德堡原子是一种处于高能态的原子,因其拥有对外场响应灵敏、具备自校准并直接追溯到国际单位制的测量能力、不受传统天线尺寸效应的影响等特点,十分适合于无线电传感与探测。自2012年Shaffer等突破性地利用里德堡原子的电磁诱导透明效应测量微波电场强度的灵敏度及不确定度均远高于传统微波测量结果之后,近十年来,以里德堡原子超外差测量等新理论和新技术为代表的研究已经实现了对电磁波的频率、极化、相位、强度等多参数的测量,相关工程化的技术也蓬勃发展,有望对传统的无线电技术产生颠覆性的影响。对基于里德堡原子的无线电技术近十年来的研究进展进行综述,从探测原理出发,梳理本领域的发展脉络,并对其未来发展趋势进行展望。
  • 图  1  里德堡原子探测微波电场装置示意图[19]

    Figure  1.  Experimental set-up used for detecting microwave electric field[19]

    图  2  基于EIT-AT的微波探测[19]

    Figure  2.  Microwave detection based on EIT-AT[19]

    图  3  利用马赫-曾德尔干涉仪测量电场实验系统[37]

    Figure  3.  Experimental system for measuring electric field by Mach-Zehnder interferometer[37]

    图  4  原子超外差法中,已知频率和相位的本地信号$ {E}_{\mathrm{L}}\left(t\right) $和待测信号场$ E\mathrm{_s}\left(t\right) $通过原子进行混频[27]

    Figure  4.  In the atomic superheterodyne method, the local signal $ {E}_{\mathrm{L}}\left(t\right) $ with known frequency and phase and the signal field $ E\mathrm{_s}\left(t\right) $ to be measured are mixed by atoms[27]

    图  5  光学重新泵浦能级示意图[43]

    Figure  5.  Schematic diagram of optical repumping energy level[43]

    图  6  利用传统谐振腔实现高灵敏度探测

    Figure  6.  Highly sensitive detection using traditional resonant cavity

    图  7  利用单体(上)和多体系统(下)实现精密测量的对比[48]

    Figure  7.  Comparison of precision measurement using single (top) and many-body system (bottom)[48]

    图  8  华南师范大学利用EIA效应实现微波电场探测的原理示意图[44]

    Figure  8.  Schematic diagram of microwave electric field detection using EIA effect in South China Normal University[44]

    图  9  山西大学团队利用里德堡原子测量K波段微波的实验装置示意图[62]

    Figure  9.  Schematic diagram of experimental device of measuring K-band microwave by Shanxi University team using Rydberg atom[62]

    图  10  里德堡原子系统探测MHz射频无线电波[67]

    Figure  10.  Detection of MHz RF radio waves by Rydberg atomic system[67]

    图  11  Anderson 研究小组集成电极的原子气室探测原理图[73]

    Figure  11.  Schematic diagram of atomic gas chamber detection with integrated electrode of Anderson research group[73]

    图  12  不同碱金属原子的跃迁频率和相应的偶极矩[33]

    Figure  12.  Quasi-continuous transition frequencies and corresponding dipole moments from different alkali atoms[33]

    图  13  Meyer等利用非共振外差技术制备的原子无线电接收机和频谱仪[81]

    Figure  13.  Atomic radio receiver and spectrum analyzer prepared by Meyer et al using non-resonant heterodyne technique[81]

    图  14  微波电场偏振测量[84]

    Figure  14.  Microwave electric field polarization measurement[84]

    图  15  实验中测量的参数A$ \theta $的关系曲线,其中A1A2表示插图中两条谱线的面积,实线为理论结果[14]

    Figure  15.  Relationship between the measured parameters A and $ \mathrm{\theta } $ in the experiment, where A1 and A2 represent the areas of two spectral lines in the graph, with the solid line representing the theoretical results[14]

    图  16  山西大学对射频识别标签散射场测量的实验装置[86]

    Figure  16.  Shanxi University's experimental setup for measuring the scattering field of radio frequency identification (RFID) tag[86]

    图  17  基于里德堡原子混频器测量偏振[88]

    Figure  17.  Measurement of polarization based on Rydberg atomic mixer[88]

    图  18  二维成像结果[90]

    Figure  18.  Two-dimensional imaging results[90]

    图  19  电小范围内基于里德堡原子实现信号接收[93]

    Figure  19.  Using a quantum sensor based on thermal Rydberg atoms to receive data encoded in electromagnetic fields in the extreme electrically small regime[93]

    图  20  NIST利用原子混频器实现相位测量的实验装置图[104]

    Figure  20.  Experimental schematic of NIST using atomic mixer to realize phase measurement[104]

    表  1  里德堡原子主要特点

    Table  1.   The main characteristics of Rydberg atoms

    property n dependence
    binding energy n−2
    energy spacing n−3
    orbital radius n2
    dipole moment n2
    radiative lifetime n3
    polarizability n7
    van der Waals interaction n11
    dipole-dipole interaction n4
    下载: 导出CSV
  • [1] Kraus J D. Heinrich Hertz-theorist and experimenter[J]. IEEE Transactions on Microwave Theory and Techniques, 1988, 36(5): 824-829. doi: 10.1109/22.3601
    [2] 约翰·D. 克劳斯, 罗纳德·J. 马赫夫克. 天线[M]. 章文勋, 译. 3版. 北京: 电子工业出版社, 2018

    Kraus J D, Marhefka R J. Antennas: for all applications[M]. Zhang Wenxun, trans. 3rd ed. Beijing: Publishing House of Electronics Industry, 2018
    [3] Kanda M. Standard antennas for electromagnetic interference measurements and methods to calibrate them[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(4): 261-273. doi: 10.1109/15.328855
    [4] Chu L J. Physical limitations of omni-directional antennas[J]. Journal of Applied Physics, 1948, 19(12): 1163-1175. doi: 10.1063/1.1715038
    [5] Harrington R F. Effect of antenna size on gain, bandwidth, and efficiency[J]. Journal of Research of the National Bureau of Standards, 1960, 64D(1): 1-12.
    [6] McLean J S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 1996, 44: 672. doi: 10.1109/8.496253
    [7] 贺青. 面向量子信息处理的超导微波谐振器研究[D]. 成都: 西南交通大学, 2022

    He Qing. Researches on superconducting microwave resonators for quantum information processing[D]. Chengdu: Southwest Jiaotong University, 2022
    [8] Bao Han, Duan Junlei, Jin Shenchao, et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements[J]. Nature, 2020, 581(7807): 159-163. doi: 10.1038/s41586-020-2243-7
    [9] Ji Wentao, Zhang Lin, Wang Mengqi, et al. Quantum simulation for three-dimensional chiral topological insulator[J]. Physical Review Letters, 2020, 125: 020504. doi: 10.1103/PhysRevLett.125.020504
    [10] Zheng Xin, Dolde J, Lochab V, et al. Differential clock comparisons with a multiplexed optical lattice clock[J]. Nature, 2022, 602(7897): 425-430. doi: 10.1038/s41586-021-04344-y
    [11] Stray B, Lamb A, Kaushik A, et al. Quantum sensing for gravity cartography[J]. Nature, 2022, 602(7898): 590-594. doi: 10.1038/s41586-021-04315-3
    [12] Jiang Min, Su Haowen, Garcon A, et al. Search for axion-like dark matter with spin-based amplifiers[J]. Nature Physics, 2021, 17(12): 1402-1407. doi: 10.1038/s41567-021-01392-z
    [13] Aasi J, Abadie J, Abbott B P, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 2013, 7(8): 613-619. doi: 10.1038/nphoton.2013.177
    [14] Jiao Yuechun, Hao Liping, Han Xiaoxuan, et al. Atom-based radio-frequency field calibration and polarization measurement using cesium nD J Floquet states[J]. Physical Review Applied, 2017, 8: 014028. doi: 10.1103/PhysRevApplied.8.014028
    [15] Miller S A, Anderson D A, Raithel G. Radio-frequency-modulated Rydberg states in a vapor cell[J]. New Journal of Physics, 2016, 18: 053017. doi: 10.1088/1367-2630/18/5/053017
    [16] Jiao Yuechun, Han Xiaoxuan, Yang Zhiwei, et al. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields[J]. Physical Review A, 2016, 94: 023832. doi: 10.1103/PhysRevA.94.023832
    [17] Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 2020, 13: 054034. doi: 10.1103/PhysRevApplied.13.054034
    [18] Wade C G, Šibalić N, De Melo N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 2017, 11(1): 40-43. doi: 10.1038/nphoton.2016.214
    [19] Sedlacek J A, Schwettmann A, Kübler H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11): 819-824. doi: 10.1038/nphys2423
    [20] Xiao Min, Li Yongqing, Jin Shaozheng, et al. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms[J]. Physical Review Letters, 1995, 74(5): 666-669. doi: 10.1103/PhysRevLett.74.666
    [21] Harris S E. Pondermotive forces with slow light[J]. Physical Review Letters, 2000, 85(19): 4032-4035. doi: 10.1103/PhysRevLett.85.4032
    [22] Li Huaqiang, Hu Jinlian, Bai Jingxu, et al. Rydberg atom-based AM receiver with a weak continuous frequency carrier[J]. Optics Express, 2022, 30(8): 13522-13529. doi: 10.1364/OE.454873
    [23] Liu Bang, Zhang Lihua, Liu Zongkai, et al. Electric field measurement and application based on Rydberg atoms[J]. Electromagnetic Science, 2023, 1: 0020151.
    [24] Holloway C L, Simons M T, Gordon J A, et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 717-728. doi: 10.1109/TEMC.2016.2644616
    [25] Mohapatra A K, Jackson T R, Adams C S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical Review Letters, 2007, 98: 113003. doi: 10.1103/PhysRevLett.98.113003
    [26] Kanda M. Standard probes for electromagnetic field measurements[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(10): 1349-1364. doi: 10.1109/8.247775
    [27] Jing Mingyong, Hu Ying, Ma Jie, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. doi: 10.1038/s41567-020-0918-5
    [28] Artusio-Glimpse A, Simons M T, Prajapati N, et al. Modern RF measurements with hot atoms: A technology review of Rydberg atom-based radio frequency field sensors[J]. IEEE Microwave Magazine, 2022, 23(5): 44-56. doi: 10.1109/MMM.2022.3148705
    [29] Holloway C L, Gordon J A, Schwarzkopf A, et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 2014, 104: 244102. doi: 10.1063/1.4883635
    [30] Mohapatra A K, Bason M G, Butscher B, et al. A giant electro-optic effect using polarizable dark states[J]. Nature Physics, 2008, 4(11): 890-894. doi: 10.1038/nphys1091
    [31] Zhang Linjie, Liu Jiasheng, Jia Yue, et al. Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement[J]. Chinese Physics B, 2018, 27: 033201. doi: 10.1088/1674-1056/27/3/033201
    [32] Fan Haoquan, Kumar S, Sheng Jiteng, et al. Effect of vapor-cell geometry on Rydberg-atom-based measurements of radio-frequency electric fields[J]. Physical Review Applied, 2015, 4: 044015. doi: 10.1103/PhysRevApplied.4.044015
    [33] Yuan Jinpeng, Yang Wenguang, Jing Mingyong, et al. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Reports on Progress in Physics, 2023, 86: 106001. doi: 10.1088/1361-6633/acf22f
    [34] Fan Haoquan, Kumar S, Kübler H, et al. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49: 104004. doi: 10.1088/0953-4075/49/10/104004
    [35] Kumar S, Fan Haoquan, Kübler H, et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 2017, 25(8): 8625-8637. doi: 10.1364/OE.25.008625
    [36] Liu Xiubin, Jia Fengdong, Zhang Huaiyu, et al. Using amplitude modulation of the microwave field to improve the sensitivity of Rydberg-atom based microwave electrometry[J]. AIP Advances, 2021, 11: 085127. doi: 10.1063/5.0054027
    [37] Kumar S, Fan Haoquan, Kübler H, et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 2017, 7: 42981. doi: 10.1038/srep42981
    [38] Li Shaohua, Yuan Jinpeng, Wang Lirong. Improvement of microwave electric field measurement sensitivity via multi-carrier modulation in Rydberg atoms[J]. Applied Sciences, 2020, 10: 8110. doi: 10.3390/app10228110
    [39] Anderson D A, Paradis E G, Raithel G. A vapor-cell atomic sensor for radio-frequency field detection using a polarization-selective field enhancement resonator[J]. Applied Physics Letters, 2018, 113: 073501. doi: 10.1063/1.5038550
    [40] Holloway C L, Prajapati N, Artusio-Glimpse A B, et al. Rydberg atom-based field sensing enhancement using a split-ring resonator[J]. Applied Physics Letters, 2022, 120: 204001. doi: 10.1063/5.0088532
    [41] Chopinaud A, Pritchard J D. Optimal state choice for Rydberg-atom microwave sensors[J]. Physical Review Applied, 2021, 16: 024008. doi: 10.1103/PhysRevApplied.16.024008
    [42] Meyer D H, O'brien C, Fahey D P, et al. Optimal atomic quantum sensing using electromagnetically-induced-transparency readout[J]. Physical Review A, 2021, 104: 043103. doi: 10.1103/PhysRevA.104.043103
    [43] Prajapati N, Robinson A K, Berweger S, et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 2021, 119: 214001. doi: 10.1063/5.0069195
    [44] Liao Kaiyu, Tu Haitao, Yang Shuzhe, et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms[J]. Physical Review A, 2020, 101: 053432. doi: 10.1103/PhysRevA.101.053432
    [45] 景明勇. 基于里德堡原子的微波超外差精密测量研究[D]. 太原: 山西大学, 2020

    Jing Mingyong. Microwave precision measurement based on Rydberg-atom superhet[D]. Taiyuan: Shanxi University, 2020
    [46] Li Shaohua, Yuan Jinpeng, Wang Lirong, et al. Enhanced microwave electric field measurement with cavity-assisted Rydberg electromagnetically induced transparency[J]. Frontiers in Physics, 2022, 10: 846687. doi: 10.3389/fphy.2022.846687
    [47] 武博, 林沂, 吴逢川, 等. 基于平行板谐振器的量子微波电场测量技术[J]. 物理学报, 2023, 72:034204 doi: 10.7498/aps.72.20221582

    Wu Bo, Lin Yi, Wu Fengchuan, et al. Quantum microwave electric field measurement technology based on enhancement electric field resonator[J]. Acta Physica Sinica, 2023, 72: 034204 doi: 10.7498/aps.72.20221582
    [48] Ding Dongsheng, Liu Zongkai, Shi Baosen, et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 2022, 18(12): 1447-1452. doi: 10.1038/s41567-022-01777-8
    [49] 张临杰, 景明勇, 张好. 基于里德堡原子的微波电场量子传感[J]. 山西大学学报(自然科学版), 2022, 45(3):712-722

    Zhang Linjie, Jing Mingyong, Zhang Hao. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Journal of Shanxi University (Natural Science Edition), 2022, 45(3): 712-722
    [50] Riedel M F, Böhi P, Li Yun, et al. Atom-chip-based generation of entanglement for quantum metrology[J]. Nature, 2010, 464(7292): 1170-1173. doi: 10.1038/nature08988
    [51] Gross C, Zibold T, Nicklas E, et al. Nonlinear atom interferometer surpasses classical precision limit[J]. Nature, 2010, 464(7292): 1165-1169. doi: 10.1038/nature08919
    [52] Strobel H, Muessel W, Linnemann D, et al. Fisher information and entanglement of non-Gaussian spin states[J]. Science, 2014, 345(6195): 424-427. doi: 10.1126/science.1250147
    [53] Penasa M, Gerlich S, Rybarczyk T, et al. Measurement of a microwave field amplitude beyond the standard quantum limit[J]. Physical Review A, 2016, 94: 022313. doi: 10.1103/PhysRevA.94.022313
    [54] Tanasittikosol M, Pritchard J D, Maxwell D, et al. Microwave dressing of Rydberg dark states[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44: 184020. doi: 10.1088/0953-4075/44/18/184020
    [55] Facon A, Dietsche E K, Grosso D, et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state[J]. Nature, 2016, 535(7611): 262-265. doi: 10.1038/nature18327
    [56] Tu Haitao, Liao Kaiyu, He Guodong, et al. Approaching the standard quantum limit of a Rydberg-atom microwave electrometer[DB/OL]. arXiv preprint arXiv: 2307.15617, 2023.
    [57] Cai Minghao, Xu Zishan, You Shuhang, et al. Sensitivity improvement and determination of Rydberg atom-based microwave sensor[J]. Photonics, 2022, 9: 250. doi: 10.3390/photonics9040250
    [58] Cai Minghao, You Shuhang, Zhang Shanshan, et al. Sensitivity extension of atom-based amplitude-modulation microwave electrometry via high Rydberg states[J]. Applied Physics Letters, 2023, 122: 161103. doi: 10.1063/5.0146768
    [59] Borówka S, Pylypenko U, Mazelanik M, et al. Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms[J]. Nature Photonics, 2024, 18(1): 32-38. doi: 10.1038/s41566-023-01295-w
    [60] Gordon J A, Holloway C L, Schwarzkopf A, et al. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms[J]. Applied Physics Letters, 2014, 105: 024104. doi: 10.1063/1.4890094
    [61] Holloway C L, Gordon J A, Jefferts S, et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6169-6182. doi: 10.1109/TAP.2014.2360208
    [62] Song Zhenfei, Feng Zhigang, Liu Xinmeng, et al. Quantum-based determination of antenna finite range gain by using Rydberg atoms[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1589-1592. doi: 10.1109/LAWP.2017.2652476
    [63] Downes L A, MacKellar A R, Whiting D J, et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor[J]. Physical Review X, 2020, 10: 011027.
    [64] 陈志文, 佘圳跃, 廖开宇, 等. 基于Rydberg原子天线的太赫兹测量[J]. 物理学报, 2021, 70:060702 doi: 10.7498/aps.70.20201870

    Chen Zhiwen, She Zhenyue, Liao Kaiyu, et al. Terahertz measurement based on Rydberg atomic antenna[J]. Acta Physica Sinica, 2021, 70: 060702 doi: 10.7498/aps.70.20201870
    [65] Zhou Yanchen, Peng Ruijie, Zhang Jinbiao, et al. Theoretical investigation on the mechanism and law of broadband terahertz wave detection using Rydberg quantum state[J]. IEEE Photonics Journal, 2022, 14: 5931808.
    [66] 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的超宽频带射频传感器[J]. 物理学报, 2018, 67:073201 doi: 10.7498/aps.67.20172636

    Jiao Yuechun, Zhao Jianming, Jia Suotang. Broadband Rydberg atom-based radio-frequency field sensor[J]. Acta Physica Sinica, 2018, 67: 073201 doi: 10.7498/aps.67.20172636
    [67] Bason M G, Tanasittikosol M, Sargsyan A, et al. Enhanced electric field sensitivity of rf-dressed Rydberg dark states[J]. New Journal of Physics, 2010, 12: 065015. doi: 10.1088/1367-2630/12/6/065015
    [68] Tanasittikosol M. Rydberg dark states in external fields[D]. Durham: Durham University, 2011.
    [69] Anderson D A, Schwarzkopf A, Miller S A, et al. Two-photon microwave transitions and strong-field effects in a room-temperature Rydberg-atom gas[J]. Physical Review A, 2014, 90: 043419. doi: 10.1103/PhysRevA.90.043419
    [70] Anderson D A, Miller S A, Raithel G, et al. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review Applied, 2016, 5: 034003. doi: 10.1103/PhysRevApplied.5.034003
    [71] Yoshida S, Reinhold C O, Burgdörfer J, et al. Photoexcitation of n $ \simeq $ 305 Rydberg states in the presence of an rf drive field[J]. Physical Review A, 2012, 86: 043415. doi: 10.1103/PhysRevA.86.043415
    [72] Coop S, Palacios S, Gomez P, et al. Floquet theory for atomic light-shift engineering with near-resonant polychromatic fields[J]. Optics Express, 2017, 25(26): 32550-32559. doi: 10.1364/OE.25.032550
    [73] Paradis E, Raithel G, Anderson D A. Atomic measurements of high-intensity VHF-band radio-frequency fields with a Rydberg vapor-cell detector[J]. Physical Review A, 2019, 100: 013420. doi: 10.1103/PhysRevA.100.013420
    [74] 崔帅威, 彭文鑫, 李松浓, 等. 基于里德堡原子的工频电场测量[J]. 高电压技术, 2023, 49(2):644-650

    Cui Shuaiwei, Peng Wenxin, Li Songnong, et al. Power frequency electric field measurement based on Rydberg atoms[J]. High Voltage Engineering, 2023, 49(2): 644-650
    [75] 李伟, 张淳刚, 张好, 等. 基于里德伯原子AC-Stark效应的工频电场测量[J]. 激光与光电子学进展, 2021, 58:1702002

    Li Wei, Zhang Chungang, Zhang Hao, et al. Power-frequency electric field measurement based on AC-stark effect of Rydberg atoms[J]. Laser & Optoelectronics Progress, 2021, 58: 1702002
    [76] Liu Weixin, Zhang Linjie, Wang Tao. Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy[J]. Chinese Physics B, 2023, 32: 053203. doi: 10.1088/1674-1056/aca6db
    [77] Osterwalder A, Merkt F. Using high Rydberg states as electric field sensors[J]. Physical Review Letters, 1999, 82(9): 1831-1834. doi: 10.1103/PhysRevLett.82.1831
    [78] Holloway C, Simons M, Haddab A H, et al. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception[J]. IEEE Antennas and Propagation Magazine, 2021, 63(3): 63-76. doi: 10.1109/MAP.2020.2976914
    [79] Meyer D H, Castillo Z A, Cox K C, et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53: 034001. doi: 10.1088/1361-6455/ab6051
    [80] Anderson D A, Sapiro R E, Raithel G. An atomic receiver for AM and FM radio communication[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2455-2462. doi: 10.1109/TAP.2020.2987112
    [81] Meyer D H, Kunz P D, Cox K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 2021, 15: 014053. doi: 10.1103/PhysRevApplied.15.014053
    [82] Simons M T, Artusio-Glimpse A B, Holloway C L, et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 2021, 104: 032824. doi: 10.1103/PhysRevA.104.032824
    [83] Zhang Lihua, Liu Zongkai, Liu Bang, et al. Rydberg microwave-frequency-comb spectrometer[J]. Physical Review Applied, 2022, 18: 014033. doi: 10.1103/PhysRevApplied.18.014033
    [84] Sedlacek J A, Schwettmann A, Kübler H, et al. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell[J]. Physical Review Letters, 2013, 111: 063001. doi: 10.1103/PhysRevLett.111.063001
    [85] 黄巍, 梁振涛, 杜炎雄, 等. 基于里德堡原子的电场测量[J]. 物理学报, 2015, 64:160702 doi: 10.7498/aps.64.160702

    Huang Wei, Liang Zhentao, Du Yanxiong, et al. Rydberg-atom-based electrometry[J]. Acta Physica Sinica, 2015, 64: 160702 doi: 10.7498/aps.64.160702
    [86] 任盛源, 景明勇, 张好, 等. 基于原子的射频识别标签近场散射场矢量测量[J]. 光谱学与光谱分析, 2022, 42(1):298-303

    Ren Shengyuan, Jing Mingyong, Zhang Hao, et al. Atom-based vector measurement of near field scattering field of radio frequency identification tag[J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 298-303
    [87] Simons M T, Haddab A H, Gordon J A, et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE Access, 2019, 7: 164975-164985. doi: 10.1109/ACCESS.2019.2949017
    [88] Wang Yuhan, Jia Fengdong, Hao Jianhai, et al. Precise measurement of microwave polarization using a Rydberg atom-based mixer[J]. Optics Express, 2023, 31(6): 10449-10457. doi: 10.1364/OE.485662
    [89] Böhi P, Treutlein P. Simple microwave field imaging technique using hot atomic vapor cells[J]. Applied Physics Letters, 2012, 101: 181107. doi: 10.1063/1.4760267
    [90] Fan Haoquan, Kumar S, Daschner R, et al. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells[J]. Optics Letters, 2014, 39(10): 3030-3033. doi: 10.1364/OL.39.003030
    [91] Meyer D H, Cox K C, Fatemi F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied Physics Letters, 2018, 112: 211108. doi: 10.1063/1.5028357
    [92] Cox K C, Meyer D H, Fatemi F K, et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 2018, 121: 110502. doi: 10.1103/PhysRevLett.121.110502
    [93] Deb A B, Kjærgaard N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms[J]. Applied Physics Letters, 2018, 112: 211106. doi: 10.1063/1.5031033
    [94] Jiao Yuechun, Han Xiaoxuan, Fan Jiabei, et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 2019, 12: 126002. doi: 10.7567/1882-0786/ab5463
    [95] Song Zhenfei, Liu Hongping, Liu Xiaochi, et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 2019, 27(6): 8848-8857. doi: 10.1364/OE.27.008848
    [96] Holloway C L, Simons M T, Gordon J A, et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1853-1857. doi: 10.1109/LAWP.2019.2931450
    [97] Menchetti M, Bussey L W, Gilks D, et al. Digitally encoded RF to optical data transfer using excited Rb without the use of a local oscillator[J]. Journal of Applied Physics, 2023, 133: 014401. doi: 10.1063/5.0129107
    [98] Holloway C L, Simons M T, Kautz M D, et al. A quantum-based power standard: Using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physics Letters, 2018, 113: 094101. doi: 10.1063/1.5045212
    [99] Simons M T, Gordon J A, Holloway C L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor[J]. Applied Optics, 2018, 57(22): 6456-6460. doi: 10.1364/AO.57.006456
    [100] Anderson D A, Sapiro R E, Raithel G. A self-calibrated SI-traceable Rydberg atom-based radio frequency electric field probe and measurement instrument[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5931-5941. doi: 10.1109/TAP.2021.3060540
    [101] 林沂, 吴逢川, 毛瑞棋, 等. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用[J]. 物理学报, 2022, 71:170702 doi: 10.7498/aps.71.20220594

    Yi Li, Wu Fengchuan, Mao Ruiqi, et al. Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication[J]. Acta Physica Sinica, 2022, 71: 170702 doi: 10.7498/aps.71.20220594
    [102] 边武, 郑顺元, 李仲启, 等. 可搬运原子微波电场测量仪[J]. 激光与光电子学进展, 2023, 60:1106022

    Bian Wu, Zheng Shunyuan, Li Zhongqi, et al. A transportable Rydberg atomic microwave electrometry[J]. Laser & Optoelectronics Progress, 2023, 60: 1106022
    [103] 边武, 李仲启, 梁琼崇, 等. 基于里德堡原子天线的微波场强仪比对验证[J]. 导航与控制, 2022, 21(5/6):185-191,79

    Bian Wu, Li Zhongqi, Liang Qiongchong, et al. Comparison experiment of integrated microwave field strength meter based on Rydberg atomic antenna at room temperature[J]. Navigation and Control, 2022, 21(5/6): 185-191,79
    [104] Simons M T, Haddab A H, Gordon J A, et al. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 2019, 114: 114101. doi: 10.1063/1.5088821
    [105] Anderson D A, Sapiro R E, Gonçalves L F, et al. Optical radio-frequency phase measurement with an internal-state Rydberg atom interferometer[J]. Physical Review Applied, 2022, 17: 044020. doi: 10.1103/PhysRevApplied.17.044020
    [106] Holloway C L, Simons M T, Haddab A H, et al. A “real-time” guitar recording using Rydberg atoms and electromagnetically induced transparency: Quantum physics meets music[J]. AIP Advances, 2019, 9: 065110. doi: 10.1063/1.5099036
    [107] Cardman R, Gonçalves L F, Sapiro R E, et al. Atomic 2D electric field imaging of a Yagi–Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument[J]. Advanced Optical Technologies, 2020, 9(5): 305-312. doi: 10.1515/aot-2020-0029
    [108] Liu Zongkai, Zhang Lihua, Liu Bang, et al. Deep learning enhanced Rydberg multifrequency microwave recognition[J]. Nature Communications, 2022, 13: 1997. doi: 10.1038/s41467-022-29686-7
    [109] Meyer D H, Hill J C, Kunz P D, et al. Simultaneous multiband demodulation using a Rydberg atomic sensor[J]. Physical Review Applied, 2023, 19: 014025. doi: 10.1103/PhysRevApplied.19.014025
    [110] Liu Xiaohong, Liao Kaiyu, Zhang Zuanxian, et al. Continuous-frequency microwave heterodyne detection in an atomic vapor cell[J]. Physical Review Applied, 2022, 18: 054003. doi: 10.1103/PhysRevApplied.18.054003
    [111] Noaman M, Amarloo H, Pandiyan R, et al. Vapor cell characterization and optimization for applications in Rydberg atom-based radio frequency sensing[C]. Proceedings of the SPIE 12447, Quantum Sensing, Imaging, and Precision Metrology. 2023: 173-178.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  73
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-23
  • 修回日期:  2024-04-28
  • 录用日期:  2024-04-28
  • 网络出版日期:  2024-05-11
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回