留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

10 kV百纳秒前沿百微秒方波脉冲源的研制

唐梦媛 蒋泽赟 丁卫东

唐梦媛, 蒋泽赟, 丁卫东. 10 kV百纳秒前沿百微秒方波脉冲源的研制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240092
引用本文: 唐梦媛, 蒋泽赟, 丁卫东. 10 kV百纳秒前沿百微秒方波脉冲源的研制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240092
Tang Mengyuan, Jiang Zeyun, Ding Weidong. A 10 kV hundred-nanosecond risetime hundred-microsecond pulse width rectangular pulse source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240092
Citation: Tang Mengyuan, Jiang Zeyun, Ding Weidong. A 10 kV hundred-nanosecond risetime hundred-microsecond pulse width rectangular pulse source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240092

10 kV百纳秒前沿百微秒方波脉冲源的研制

doi: 10.11884/HPLPB202436.240092
详细信息
    作者简介:

    唐梦媛,17740120657@163.com

    通讯作者:

    丁卫东,wdding@xjtu.edu.cn

  • 中图分类号: TM832

A 10 kV hundred-nanosecond risetime hundred-microsecond pulse width rectangular pulse source

  • 摘要: 针对宽频测量系统量值传递需求,基于Marx电路设计了一款单极性方波脉冲源。该脉冲源以MOSFET器件为核心,采用光纤隔离驱动方案实现10 kV的方波脉冲输出。采用叠层结构搭建12级样机,实现了脉冲发生器的模块化与小型化。实验结果表明:该方波脉冲源在带300 pF以下的容性负载时可实现前沿小于百纳秒、输出电压kV级别、脉宽200 μs的脉冲输出。该电源适用于宽频测量设备的方波响应性能实验等脉冲功率相关用途。
  • 图  1  基于固态开关的Marx发生器拓扑原理

    Figure  1.  Marx generator topology principle based on solid state switch

    图  2  单层四级PCB设计实物图

    Figure  2.  Top and bottom view of the pulse generator

    图  3  驱动电路和控制电路设计示意图

    Figure  3.  Drive circuit and control circuit design diagram

    图  4  方波源结构实物图

    Figure  4.  Square wave source structure diagram

    图  5  性能测试平台

    Figure  5.  Performance test platform

    图  6  带100 pF电容负载输出电压波形

    Figure  6.  Output voltage waveform with 100 pF capacitive load

    图  7  方波源带载50 pF、100 pF的输出电压波形

    Figure  7.  Output voltage waveform of 50~300 pF capacitive load

    表  1  不同容值负载下的输出电压和上升时间

    Table  1.   Output voltage and rise time under different capacitance loads

    capacitance/pF charging voltage/V output voltage/kV rise time/ns overshoot/% flattop declination/%
    50 800 9.46 77 2.83 1.46
    100 800 9.46 84 4.99 1.46
    150 800 9.37 95 2.97 2.40
    200 700 8.02 100 0.01 4.52
    250 500 5.89 100 0.69 1.83
    300 300 3.55 108 0.06 1.39
    下载: 导出CSV
  • [1] 李进生. 宽频测量装置现场测试校准技术研究[D]. 北京: 华北电力大学, 2023

    Li Jinsheng. Research on field test and calibration method of wide-frequency measurement device[D]. Beijing: North China Electric Power University, 2023
    [2] Souders T M, Flach D R. Accurate frequency response determinations from discrete step response data[J]. IEEE Transactions on Instrumentation and Measurement, 1987, IM-36(2): 433-439. doi: 10.1109/TIM.1987.6312715
    [3] 孙泽来, 马国明, 郭攀辉, 等. 采用内置探头结构的1000kV特快速暂态过电压测量用窗口式传感器设计[J]. 高电压技术, 2013, 39(6):1426-1433

    Sun Zelai, Ma Guoming, Guo Panhui, et al. Design of a VFTO port hole sensor for 1 000 kV based on inner probe structure[J]. High Voltage Engineering, 2013, 39(6): 1426-1433
    [4] 谢施君, 张晨萌, 丁卫东, 等. 亚纳秒级同轴电阻分压器研制及其不确定度评定[J]. 高电压技术, 2020, 46(12):4391-4399

    Xie Shijun, Zhang Chenmeng, Ding Weidong, et al. Development and uncertainty evaluation of sub-nanosecond coaxial resistive divider[J]. High Voltage Engineering, 2020, 46(12): 4391-4399
    [5] 葛劲伟, 姜松, 饶俊峰, 等. 全固态高压双极性方波脉冲叠加器的研制[J. 高电压技术, 2019, 45(4): 1305-1312

    Ge Jinwei, Jiang Song, Rao Junfeng, et al. Development of all-solid-state bipolar pulse adder with high voltage rectangular wave pulses output[J]. High Voltage Engineering, 2019, 45(4): 1305-1312
    [6] 嵇保健, 王若冰, 洪峰, 等. 基于Marx电路的纳秒级高压脉冲电源设计[J]. 高电压技术, 2016, 42(12):3758-3762

    Ji Baojian, Wang Ruobing, Hong Feng, et al. Design of nanosecond high-voltage pulsed power source based on Marx generator[J]. High Voltage Engineering, 2016, 42(12): 3758-3762
    [7] 姜松, 黄利飞, 饶俊峰, 等. 基于Marx的任意极性方波脉冲电源设计[J]. 强激光与粒子束, 2022, 34:055001

    Jiang Song, Huang Lifei, Rao Junfeng, et al. Design of arbitrary polarity rectangular pulse power supply based on Marx[J]. High Power Laser and Particle Beams, 2022, 34: 055001
    [8] 雷宇, 邱剑, 刘克富. 150kV全固态高压脉冲发生器设计[J]. 强激光与粒子束, 2012, 24(3):673-677 doi: 10.3788/HPLPB20122403.0673

    Lei Yu, Qiu Jian, Liu Kefu. Design of 150 kv all-solid-state high voltage pulsed power generator[J]. High Power Laser and Particle Beams, 2012, 24(3): 673-677 doi: 10.3788/HPLPB20122403.0673
    [9] 张乔根, 邱毓昌, 冯允平. 亚纳秒前沿高压脉冲信号发生器[J]. 电工电能新技术, 1996(2):1-5

    Zhang Qiaogen, Qiu Yuchang, Feng Yunping. Generator of high-voltage rectangular pulses with subnanosecond risetime[J]. Advanced Technology of Electrical Engineering and Energy, 1996(2): 1-5
    [10] 苏少春, 谢施君, 丁卫东, 等. VFTO传感器校准用2 kV亚纳秒级上升沿方波发生装置研制[J]. 高电压技术, 2020, 46(8):2976-2983

    Su Shaochun, Xie Shijun, Ding Weidong, et al. Development of 2 kV square wave source with sub-nanosecond rise time using for the calibration of VFTO sensors[J]. High Voltage Engineering, 2020, 46(8): 2976-2983
    [11] 谢施君, 穆舟, 丁卫东, 等. 纳秒级上升沿100kV方波发生装置研制[J]. 高电压技术, 2021, 47(6):2169-2176

    Xie Shijun, Mu Zhou, Ding Weidong, et al. Development of the 100 kV square wave generator with nanosecond rise Time[J]. High Voltage Engineering, 2021, 47(6): 2169-2176
    [12] 赵宽祥. 基于Marx的全固态倍频高压脉冲电源技术的研究[D]. 天津: 河北工业大学, 2023

    Zhao Kuanxiang. Research on full solid state frequency doubling high voltage pulse power supply based on Marx[D]. Tianjin: Hebei University of Technology, 2023
    [13] Ren Xiaojing, Sugai T, Tokuchi A, et al. Solid-state Marx generator circuit based on inductive energy storage[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3377-3382. doi: 10.1109/TPS.2021.3076082
    [14] Zhong Zhengyi, Rao Junfeng, Liu Haotian, et al. Review on solid-state-based Marx generators[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3625-3643. doi: 10.1109/TPS.2021.3121683
    [15] 熊兰, 马龙, 胡国辉, 等. 具有负载普适性的高压双极性方波脉冲源研制[J]. 电工技术学报, 2015, 30(12):51-60

    Xiong Lan, Ma Long, Hu Guohui, et al. A newly high-voltage square bipolar pulse generator for various loads[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 51-60
    [16] Liu Ying, Fan Rui, Zhang Xiaoning, et al. Bipolar high voltage pulse generator without H-bridge based on cascade of positive and negative Marx generators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 476-483. doi: 10.1109/TDEI.2018.007861
    [17] Fan Rui, Wang Yaogong, Zhang Xiaoning, et al. Parameterized nanosecond pulse realization through parametrical modulation of timing sequence of switches in Marx circuit[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4096-4104. doi: 10.1109/TPS.2019.2923416
    [18] 焦毅, 姜松, 王永刚, 等. 小型化电感隔离型Marx发生器的研制[J]. 强激光与粒子束, 2023, 35:055002

    Jiao Yi, Jiang Song, Wang Yonggang, et al. Development of miniaturized inductor-isolated Marx generator[J]. High Power Laser and Particle Beams, 2023, 35: 055002
    [19] 王昌金, 姚陈果, 董守龙, 等. 基于Marx和LTD拓扑的全固态复合模式脉冲源的研制[J]. 电工技术学报, 2018, 33(13):3089-3097

    Wang Changjin, Yao Chenguo, Dong Shoulong, et al. The development of all solid-state mixed pulse generator based on Marx and LTD topologies[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3089-3097
  • 加载中
计量
  • 文章访问数:  43
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-05-07
  • 录用日期:  2024-04-28
  • 网络出版日期:  2024-05-18

目录

    /

    返回文章
    返回