留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空核爆炸磁流体动力学电磁脉冲

王建国

王建国. 高空核爆炸磁流体动力学电磁脉冲[J]. 强激光与粒子束, 2024, 36: 073001. doi: 10.11884/HPLPB202436.240105
引用本文: 王建国. 高空核爆炸磁流体动力学电磁脉冲[J]. 强激光与粒子束, 2024, 36: 073001. doi: 10.11884/HPLPB202436.240105
Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001. doi: 10.11884/HPLPB202436.240105
Citation: Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001. doi: 10.11884/HPLPB202436.240105

高空核爆炸磁流体动力学电磁脉冲

doi: 10.11884/HPLPB202436.240105
基金项目: 国家重点研发计划项目(2020YFA0709800)
详细信息
    作者简介:

    王建国,wanguiuc@mail.xjtu.edu.cn

  • 中图分类号: TL91

Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion

  • 摘要: 高空核爆炸产生的磁流体动力学(晚期)电磁脉冲对电力系统等国家重要基础设施具有严重影响。由于晚期电磁脉冲产生的机理复杂,依赖因素众多,包括爆炸当量、爆高、爆炸方位、爆炸时间、观察点位置以及土壤电导率等,因此,目前还没有成熟的代码可以模拟整个晚期电磁脉冲的产生过程。介绍晚期电磁脉冲的产生机理,讨论晚期电磁脉冲电场随核装置爆炸当量、爆高和大气状况的变化关系。E3A电场峰值随爆炸当量线性增加,而E3B电场峰值则随爆炸当量增加出现明显的饱和效应。分析了当前晚期电磁脉冲模拟代码现状,为进一步研究晚期电磁脉冲数值模拟方法和代码研发提供参考。
  • 图  1  HEMP波形示意图

    Figure  1.  Schematic of high altitude electromagnetic pulse waveform

    图  2  E3A电磁脉冲产生的示意图(火球扩展情况)[27]

    Figure  2.  Schematic of E3A generation (expanding fireball)[27]

    图  3  E3A电场峰值随爆高和大气密度的变化[27]

    Figure  3.  Peak electric field of E3A electromagnetic pulse vs burst altitude and atmospheric density[27]

    图  4  E3A电场峰值随爆炸当量的变化[27]

    Figure  4.  Peak electric field of E3A electromagnetic pulse vs burst yield[27]

    图  5  E3B产生机理的示意图[27]

    Figure  5.  Schematic of E3B generation[27]

    图  6  E3B电场峰值随爆高的变化关系[27]

    Figure  6.  Peak electric field of E3B electromagnetic pulse vs burst altitude[27]

    图  7  E3B电场峰值随当量的变化关系[27]

    Figure  7.  Peak electric field of E3B electromagnetic pulse vs burst yield[27]

    图  8  IEC标准给出的E3-EMP电场波形[28]

    Figure  8.  Waveform of electric field from IEC standard[28]

    图  9  IEC标准给出的水平磁场

    Figure  9.  Waveform of horizontal magnetic field from IEC standard

  • [1] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [2] 王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14:010101 doi: 10.12061/j.issn.2095-6223.2023.010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101
    [3] Lee K S H. EMP interaction: principles, techniques, and reference data[M]. Washington: Hemisphere Publishing Corporation, 1986.
    [4] Baum C E. From the electromagnetic pulse to high-power electromagnetics[J]. Proceedings of the IEEE, 1992, 80(6): 789-817. doi: 10.1109/5.149443
    [5] Li Ya, Liu Li, Wang Jianguo, et al. Numerical simulation of the intermediate-time high-altitude electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1423-1430. doi: 10.1109/TEMC.2022.3179676
    [6] Karzas W J, Latter R. The electromagnetic signal due to the interaction of nuclear explosions with the earth’s magnetic field[J]. Journal of Geophysical Research, 1962, 67(12): 4635-4640. doi: 10.1029/JZ067i012p04635
    [7] 高银军, 闫凯, 田宙, 等. 强爆炸早期火球光辐射能谱的数值计算[J]. 爆炸与冲击, 2015, 35(3):289-295 doi: 10.11883/1001-1455-(2015)03-0289-07

    Gao Yinjun, Yan Kai, Tian Zhou, et al. Numerical calculation of early fireball radiation spectrum in strong explosion[J]. Explosion and Shock Waves, 2015, 35(3): 289-295 doi: 10.11883/1001-1455-(2015)03-0289-07
    [8] 高银军, 闫凯, 田宙, 等. 基于辐流计算的强爆炸火球光辐射功率走时研究[J]. 固体力学学报, 2013, 33(s1):95-98

    Gao Yinjun, Yan Kai, Tian Zhou, et al. Investigation of fireball radiation power-time history in strong explosion basing on radiation hydrodynamics calculation[J]. Chinese Journal of Solid Mechanics, 2013, 33(s1): 95-98
    [9] 杨斌, 牛胜利, 朱金辉, 等. 高空核爆炸碎片云早期扩展规律研究[J]. 物理学报, 2012, 61:202801 doi: 10.7498/aps.61.202801

    Yang Bin, Niu Shengli, Zhu Jinhui, et al. Research of the early debris expansion from high-altitude nuclear explosions[J]. Acta Physica Sinica, 2012, 61: 202801 doi: 10.7498/aps.61.202801
    [10] 陶应龙, 王建国, 牛胜利, 等. 高空核爆炸瞬发辐射电离效应的数值模拟[J]. 物理学报, 2010, 59(8):5914-5920 doi: 10.7498/aps.59.5914

    Tao Yinglong, Wang Jianguo, Niu Shengli, et al. Numerical simulation of the ionization effects of prompt radiation from high-altitude nuclear explosions[J]. Acta Physica Sinica, 2010, 59(8): 5914-5920 doi: 10.7498/aps.59.5914
    [11] 牛胜利, 罗旭东, 王建国, 等. 高空核爆炸注入辐射带电子的大气扩散损失[J]. 计算物理, 2011, 28(4):569-575 doi: 10.3969/j.issn.1001-246X.2011.04.015

    Niu Shengli, Luo Xudong, Wang Jianguo, et al. Atmospheric diffusion loss of radiation belt trapped electrons injected by high altitude nuclear detonation[J]. Chinese Journal of Computational Physics, 2011, 28(4): 569-575 doi: 10.3969/j.issn.1001-246X.2011.04.015
    [12] 顾旭东, 赵正予, 倪彬彬, 等. 高空核爆炸形成人工辐射带的数值模拟[J]. 物理学报, 2009, 58(8):5871-5878 doi: 10.3321/j.issn:1000-3290.2009.08.117

    Gu Xudong, Zhao Zhengyu, Ni Binbin, et al. Numerical simulation of the formation of artificial radiation belt caused by high altitude nuclear detonation[J]. Acta Physica Sinica, 2009, 58(8): 5871-5878 doi: 10.3321/j.issn:1000-3290.2009.08.117
    [13] 乔登江. 核爆炸物理概论[M]. 北京: 国防工业出版社, 2003

    Qiao Dengjiang. Introduction to the physics of nuclear explosion[M]. Beijing: Defense Industry Press, 2003
    [14] Meng Cui. Numerical simulation of the HEMP environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 440-445. doi: 10.1109/TEMC.2013.2258024
    [15] Li Ya, Wang Jianguo, Zuo Yinghong, et al. Simulation of high-altitude nuclear electromagnetic pulse using a modified model of scattered gamma[J]. IEEE Transactions on Nuclear Science, 2020, 67(12): 2474-2480. doi: 10.1109/TNS.2020.3031320
    [16] Campione S, Warne L K, Halligan M, et al. Modeling E1/E2 EMP events on power grids[R]. SAND2018-8324PE, Albuquerque: Sandia National Lab. , 2018.
    [17] Foster Jr J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack[R]. 2008.
    [18] Pierre B J, Krofcheck D J, Hoffman M J, et al. Modeling framework for bulk electric grid impacts from HEMP E1 and E3 effects (tasks 3.1 final report)[R]. SAND2021-0865, Albuquerque: Sandia National Lab. , 2021.
    [19] Horton R. Magnetohydrodynamic electromagnetic pulse assessment of the continental US electric grid[R]. Electric Power Research Institute, 2017.
    [20] Li Ya, Wang Jianguo, Zuo Yinghong, et al. Sensitivity analysis of conductivity models in simulation of high-altitude electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(6): 2094-2103. doi: 10.1109/TEMC.2022.3208428
    [21] 谢海燕. 系统级HEMP耦合分析方法研究进展[J]. 现代应用物理, 2023, 14(2):020102 doi: 10.12061/j.issn.2095-6223.2023.020102

    Xie Haiyan. Research progress of system level HEMP coupling analysis methods[J]. Modern Applied Physics, 2023, 14(2): 020102 doi: 10.12061/j.issn.2095-6223.2023.020102
    [22] 王建国, 刘国治, 周金山. 微波孔缝线性耦合函数研究[J]. 强激光与粒子束, 2003, 15(11):1093-1099

    Wang Jianguo, Liu Guozhi, Zhou Jinshan. Investigations on function for linear coupling of microwaves into slots[J]. High Power Laser and Particle Beams, 2003, 15(11): 1093-1099
    [23] Chen Juan, Wang Jianguo. A three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(2): 354-360. doi: 10.1109/TEMC.2007.893329
    [24] 张俊杰, 彭国良, 任泽平. 高空核爆炸早期碎片等离子体模拟[J]. 现代应用物理, 2023, 14(3):020401 doi: 10.12061/j.issn.2095-6223.2023.020401

    Zhang Junjie, Peng Guoliang, Ren Zeping. Plasma simulation for early-stage debris in high altitude nuclear explosions[J]. Modern Applied Physics, 2023, 14(3): 020401 doi: 10.12061/j.issn.2095-6223.2023.020401
    [25] 秦锋, 陈伟, 毛从光, 等. 电力系统高空电磁脉冲效应研究综述[J]. 现代应用物理, 2023, 14(3):030102

    Qin Feng, Chen Wei, Mao Congguang, et al. Review of high altitude electromagnetic pulse effects on power system[J]. Modern Applied Physics, 2023, 14(3): 030102
    [26] Wilson C. High altitude electromagnetic pulse (HEMP) and high power microwave (HPM) devices: threat assessments[R]. Washington: Congressional Research Service, 2004.
    [27] Gilbert J, Kappenman J, Radasky W, et al. The late-time (E3) high-altitude electromagnetic pulse (HEMP) and its impact on the U. S. power grid[R]. Meta-R-321, Metatech Corporation, 2010.
    [28] IEC 61000-2-9: 1996, Electromagnetic compatibility (EMC) - part 2: environment - section 9: description of HEMP environment - radiated disturbance. Basic EMC publication[S].
    [29] 刘利, 左应红, 牛胜利, 等. 中子及次级γ在高空长距离蒙特卡罗输运模拟中的减方差方法[J]. 现代应用物理, 2022, 13:010202

    Liu Li, Zuo Yinghong, Niu Shengli, et al. A varaince reduction method for simulating the long-distance transport of neutrons and secondary γ in high-altitude atmosphere by Monte Carlo method[J]. Modern Applied Physics, 2022, 13: 010202
    [30] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14:030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [31] 彭国良, 张俊杰. 基于流体-磁流体-粒子混合方法的高空核爆炸碎片云模拟[J]. 物理学报, 2021, 70:180703 doi: 10.7498/aps.70.20210347

    Peng Guoliang, Zhang Junjie. Hydro-magneto-PIC hybrid model for description of debris motion in high altitude nuclear explosions[J]. Acta Physica Sinica, 2021, 70: 180703 doi: 10.7498/aps.70.20210347
    [32] Keenan B D, Le A, Winske D, et al. Hybrid particle-in-cell simulations of electromagnetic coupling and waves from streaming burst debris[J]. Physics of Plasmas, 2022, 29: 012107. doi: 10.1063/5.0075482
    [33] Belyaev M A, Larson D J, Cohen B I, et al. Topanga: a kinetic ion plasma code for large-scale ionospheric simulations on magnetohydrodynamic timescales[J]. Physics of Plasmas, 2024, 31: 012902. doi: 10.1063/5.0177132
    [34] Le A, Stanier A, Yin Lin, et al. Hybrid-VPIC: an open-source kinetic/fluid hybrid particle-in-cell code[J]. Physics of Plasmas, 2023, 30: 063902. doi: 10.1063/5.0146529
  • 加载中
图(9)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  36
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-05-01
  • 录用日期:  2024-05-01
  • 网络出版日期:  2024-05-13
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回