View factors in high-temperature pebble beds based on the ray tracing theory
-
摘要: 在高温颗粒球床堆芯辐射换热过程中,角系数是辐射换热计算的关键参数。传统数值计算角系数的方法需进行复杂积分运算,且不同几何形状的积分公式各异,计算难度较大。为降低球床颗粒间角系数的计算难度,提出了一种基于光线追踪理论并结合颗粒辐射特性的角系数计算模型。该模型无需对颗粒进行建模做离散分析,仅需获取颗粒的坐标信息和半径即可进行计算,极大地简化了计算过程。通过在颗粒相切情况下对比光线追踪与数值结果,当光线密度达到特定值时,二者结果相对误差在1%内。颗粒间辐射主要以中心连线为辐射能量最强处,向四周减少,其变化趋势呈余弦函数。在球床颗粒随机堆积情况下,选取单个颗粒进行分析,发现辐射范围以2倍直径内为主,此时角系数累积超过0.98,颗粒数量在100个以内;在3倍直径范围内,累积角系数超过0.99。Abstract:
Background In high-temperature pebble bed cores, radiative heat transfer plays a crucial role, where the view factor is a key parameter in determining radiative exchange between particles. Traditional methods for calculating view factors rely on complex integration, which varies with geometric configurations and is computationally intensive.Purpose This study aims to accurately calculate view factors in randomly packed pebble beds. It proposes a ray tracing model based on thermal radiation mechanisms to simplify the calculation of view factors between particles in complex packing structures.Methods Firstly, the particle surface is discretized to generate uniformly distributed ray origin points. Secondly, ray directions are determined based on the characteristics of thermal emission. Thirdly, rays defined in local coordinates are transformed into global space and traced for intersections with target particles. Finally, the view factor is computed as the ratio of rays that collide with target particles to the total number of emitted rays.Results The results show that inter-particle radiation is mainly concentrated at the center line and decays towards the periphery, showing a clear cosine distribution. The radiation range of a single particle is mainly concentrated within twice the particle diameter, at which point the view factor exceeds 0.98 and the number of particles is less than 100. Within three times the diameter, the cumulative view factor exceeds 0.99.Conclusions The proposed quasi-Monte Carlo ray tracing model provides an accurate and efficient method for computing view factors in dense particle systems. It effectively captures the anisotropic nature of radiative transfer in randomly packed beds and offers a practical tool for analysing thermal radiation in high-temperature pebble beds.-
Key words:
- high-temperature pebble beds /
- radiation heat exchange /
- ray tracing /
- view factor /
- numerical method
-
表 1 光线行进距离和光线偏移角度的变化趋势
Table 1. The trend of changes in the distance traveled by light and the angle of light deviation
particle center
distance/Hray tracing/10-2 numerical metho/10-2 average distance of
heat radiationaverage angle of
thermal radiation2 7.573 7.558 0.358 30.05 3 2.964 2.959 1.494 18.25 4 1.605 1.615 2.620 13.35 5 1.017 1.021 3.621 10.51 6 0.698 0.704 4.597 8.73 -
[1] 游战洪. 世界首座模块式球床高温气冷堆[J]. 科学, 2016, 68(1): 24-28You Zhanhong. The world first pebble-bed modular high temperature gas cooled reactor[J]. Science, 2016, 68(1): 24-28 [2] Wu Yongyong, Ren Cheng, Yang Xingtuan, et al. Repeatable experimental measurements of effective thermal diffusivity and conductivity of pebble bed under vacuum and helium conditions[J]. International Journal of Heat and Mass Transfer, 2019, 141: 204-216. doi: 10.1016/j.ijheatmasstransfer.2019.06.071 [3] 姜胜耀, 桂南, 杨星团, 等. 球床式高温气冷堆球流及球床辐射的理论与实验研究进展[J]. 原子能科学技术, 2019, 53(10): 1918-1929Jiang Shengyao, Gui Nan, Yang Xingtuan, et al. Theoretical and experimental research progress on pebble flow and effective thermal conductivity in pebble-type HTGR[J]. Atomic Energy Science and Technology, 2019, 53(10): 1918-1929 [4] 吴浩, 桂南, 杨星团, 等. 高温球床辐射换热机理研究[J]. 核动力工程, 2016, 37(2): 32-37Wu Hao, Gui Nan, Yang Xingtuan, et al. Study on mechanism of radiation heat exchange for high temperature pebble beds[J]. Nuclear Power Engineering, 2016, 37(2): 32-37 [5] 郑艳华, 夏冰, 解衡, 等. HTR-10超高温运行的初步物理热工设计[J]. 中国基础科学, 2021, 23(3): 16-20Zheng Yanhua, Xia Bing, Xie Heng, et al. Preliminary physical design and thermal hydraulic design on HTR-10 operating in higher outlet temperature[J]. China Basic Science, 2021, 23(3): 16-20 [6] 包涛, 高若晗, 谭援强. 基于斐波那契数积分计算非等径颗粒视角系数[J]. 计算力学学报, 2022, 39(3): 389-396 doi: 10.7511/jslxCMGM202216Bao Tao, Gao Ruohan, Tan Yuanqiang. Fibonacci integration for evaluating view factors coefficient of non-equal-diameter particles[J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 389-396 doi: 10.7511/jslxCMGM202216 [7] 王宪礴, 赵富龙, 谢林, 等. 氦氙气冷小堆燃料棒辐射散热特性分析[J]. 原子能科学技术, 2024, 58(5): 1060-1068Wang Xianbo, Zhao Fulong, Xie Lin, et al. Analysis of radiation heat dissipation characteristics of helium-xenon gas cooled small reactor fuel rod[J]. Atomic Energy Science and Technology, 2024, 58(5): 1060-1068 [8] Rousseau P G, du Toit C G, van Antwerpen W, et al. Separate effects tests to determine the effective thermal conductivity in the PBMR HTTU test facility[J]. Nuclear Engineering and Design, 2014, 271: 444-458. doi: 10.1016/j.nucengdes.2013.12.015 [9] De Beer M, Du Toit C G, Rousseau P G. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect[J]. Nuclear Engineering and Design, 2017, 314: 67-81. doi: 10.1016/j.nucengdes.2017.01.010 [10] Nassar Y F. Analytical-numerical computation of view factor for several arrangements of two rectangular surfaces with non-common edge[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120130. doi: 10.1016/j.ijheatmasstransfer.2020.120130 [11] Howell J R, Daun K J. The past and future of the Monte Carlo method in thermal radiation transfer[J]. Journal of Heat Transfer, 2021, 143: 100801. doi: 10.1115/1.4050719 [12] Mirhosseini M, Saboonchi A. View factor calculation using the Monte Carlo method for a 3D strip element to circular cylinder[J]. International Communications in Heat and Mass Transfer, 2011, 38(6): 821-826. doi: 10.1016/j.icheatmasstransfer.2011.03.022 [13] Gupta M K, Bumtariya K J, Shukla H, et al. Methods for evaluation of radiation view factor: a review[J]. Materials Today: Proceedings, 2017, 4(2): 1236-1243. doi: 10.1016/j.matpr.2017.01.143 [14] 杨星团, 刘志勇, 胡文平, 等. HTR-10堆芯球流运动的唯象学DEM模拟[J]. 原子能科学技术, 2013, 47(12): 2231-2237Yang Xingtuan, Liu Zhiyong, Hu Wenping, et al. DEM simulation of pebble flow in HTR-10 core by phenomenological method[J]. Atomic Energy Science and Technology, 2013, 47(12): 2231-2237 [15] Sobol’ I M, Asotsky D, Kreinin A, et al. Construction and comparison of high-dimensional sobol’ generators[J]. Wilmott, 2011, 2011(56): 64-79. doi: 10.1002/wilm.10056 [16] Jarc A, Pers J, Rogelj P, et al. Efficient sampling for the evaluation protocol for 2-D rigid registration[J]. Informacije MIDEM, 2009, 39(1): 1-8. [17] Todorov V, Georgiev S. A Hammersley and Van Der Corput sequences comparison for multidimensional sensitivity analysis[J]. AIP Conference Proceedings, 2023, 2953: 090008. [18] Howell J R, Menguc M P, Daun K, et al. Thermal radiation heat transfer[M]. 7th ed. Boca Raton: CRC Press, 2020. [19] Feng Yuntian, Han K. An accurate evaluation of geometric view factors for modelling radiative heat transfer in randomly packed beds of equally sized spheres[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6374-6383. [20] Smith N A, Tromble R W. Sampling uniformly from the unit simplex[R]. Baltimore: Johns Hopkins University, 2004: 29. [21] 埃里克·海恩斯, 托马斯·艾科奈-莫勒. 光线追踪精粹—基于DXR及其他API的高质量实时渲染[M]. 张静, 黄琦, 张鹏飞, 译. 北京: 科学出版社, 2021Haines E, Akenine-Möller T. Ray tracing gems: high-quality and real-time rendering with DXR and other APIs[M]. Zhang Jing, Huang Qi, Zhang Pengfei, trans. Beijing: Science Press, 2021 [22] Walker T, Xue Shicheng, Barton G W. A robust Monte Carlo based ray-tracing approach for the calculation of view factors in arbitrary 3D geometries[C]//Proceedings of the CHT-12. ICHMT International Symposium on Advances in Computational Heat Transfer. 2012. [23] 程云阶, 李一波, 丛伟. 光线追踪求交算法的研究及其实现[J]. 沈阳航空工业学院学报, 2000, 17(2): 9-13Cheng Yunjie, Li Yibo, Cong Wei. Research on ray tracking cap[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2000, 17(2): 9-13 [24] Frank A, Heidemann W, Spindler K. Modeling of the surface-to-surface radiation exchange using a Monte Carlo method[J]. Journal of Physics: Conference Series, 2016, 745: 032143. doi: 10.1088/1742-6596/745/3/032143 -
下载: