留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线辐照典型材料出射电子特征规律研究

韩立会 朱金辉 王建国 牛胜利 刘利 左应红

韩立会, 朱金辉, 王建国, 等. X射线辐照典型材料出射电子特征规律研究[J]. 强激光与粒子束, 2025, 37: 106016. doi: 10.11884/HPLPB202537.250215
引用本文: 韩立会, 朱金辉, 王建国, 等. X射线辐照典型材料出射电子特征规律研究[J]. 强激光与粒子束, 2025, 37: 106016. doi: 10.11884/HPLPB202537.250215
Han Lihui, Zhu Jinhui, Wang Jianguo, et al. Investigation of emitted electron characteristics from typical materials under X-ray irradiation[J]. High Power Laser and Particle Beams, 2025, 37: 106016. doi: 10.11884/HPLPB202537.250215
Citation: Han Lihui, Zhu Jinhui, Wang Jianguo, et al. Investigation of emitted electron characteristics from typical materials under X-ray irradiation[J]. High Power Laser and Particle Beams, 2025, 37: 106016. doi: 10.11884/HPLPB202537.250215

X射线辐照典型材料出射电子特征规律研究

doi: 10.11884/HPLPB202537.250215
基金项目: 国家重点研发计划资助项目(2020YFA0709800)
详细信息
    作者简介:

    韩立会,hanlihui@nint.ac.cn

    通讯作者:

    王建国,wangjianguo@nint.ac.cn

  • 中图分类号: O571.33

Investigation of emitted electron characteristics from typical materials under X-ray irradiation

  • 摘要: 电子发射参数是研究X射线辐照下腔体结构产生系统电磁脉冲(SGEMP)效应的关键电流源项。采用基于浓缩历史方法与单事件方法建立的电子输运模块开展光子-电子耦合输运蒙特卡罗模拟计算。通过分析光子、电子与物质相互作用特点,系统分析了不同能量X射线正入射辐照典型材料时产生的背向及前向电子发射特性,包括电子能谱、角分布规律。建立基于光子平均自由程的背向电子产额计算方法,提出了饱和产额计算公式与饱和厚度;针对前向电子产额,结合光子衰减规律和电子最大射程建立了计算模型,并引入累积因子进行修正,进一步提升了准确性。在SGEMP关注的X射线能量范围及典型材料厚度范围内进行验证,结果显示,与蒙特卡罗直接模拟相比,计算公式给出的背向、前向电子产额相对偏差在10%以内,研究结果为SGEMP的电子产额计算提供了一种高效便捷的求解方法。
  • 图  1  计算模型示意图

    Figure  1.  Schematic diagram of the computational model

    图  2  光子与铝原子的相互作用参数

    Figure  2.  Photon interaction parameters with aluminum atoms

    图  3  电子在铝介质中的射程图

    Figure  3.  Electron range in aluminum medium

    图  4  平板内部对表面出射电子有贡献的区域示意图

    Figure  4.  Schematic of regions contributing to surface-emitted electrons within the plate

    图  5  背向出射光子、电子能谱

    Figure  5.  Energy distributions of backward-emitted photons and electrons

    图  6  背向出射电子角分布

    Figure  6.  Angular distribution of backward-emitted electrons

    图  7  不同能量X射线入射背向出射电子的饱和产额

    Figure  7.  Saturation yields of backward-emitted electrons under X rays of varying energies

    图  8  前向出射电子特征

    Figure  8.  Characteristics of forward-emitted electrons

    图  9  前向最大电子产额

    Figure  9.  Maximum forward electron yield

    图  10  累积因子修正函数曲线

    Figure  10.  Cumulative factor correction function curve

    表  1  不同能量X射线入射不同厚度铝板背向出射电子产额

    Table  1.   Backward electron yields for aluminum plates of varying thicknesses under different X-ray energies

    E/keV rmax/cm $ \lambda /{\text{cm}} $ $ {Y_{{r_{\max }}}} $ $ {Y_{0.25\lambda }} $ $ {Y_{0.5\lambda }} $ $ {Y_{0.75\lambda }} $ $ {Y_\lambda } $ $ {Y_{3\lambda }} $ $ {Y_{5\lambda }} $
    1 2.93×10−6 3.13×10−4 1.33×10−3 1.33×10−3 1.33×10−3 1.33×10−3 1.33×10−3 1.33×10−3 1.33×10−3
    5 4.05×10−5 1.92×10−3 2.45×10−3 2.46×10−3 2.46×10−3 2.46×10−3 2.46×10−3 2.46×10−3 2.46×10−3
    10 1.31×10−4 1.41×10−2 1.23×10−3 1.24×10−3 1.24×10−3 1.24×10−3 1.24×10−3 1.24×10−3 1.24×10−3
    20 4.34×10−4 1.08×10−1 4.12×10−4 4.18×10−4 4.21×10−4 4.22×10−4 4.23×10−4 4.24×10−4 4.24×10−4
    40 1.44×10−3 6.52×10−1 1.50×10−4 1.67×10−4 1.73×10−4 1.77×10−4 1.78×10−4 1.80×10−4 1.80×10−4
    60 2.91×10−3 1.33 7.42×10−5 9.43×10−5 1.04×10−4 1.10×10−4 1.12×10−4 1.16×10−4 1.16×10−4
    80 4.76×10−3 1.84 4.53×10−5 6.58×10−5 7.52×10−5 7.98×10−5 8.25×10−5 8.62×10−5 8.65×10−5
    100 6.94×10−3 2.17 3.13×10−5 5.33×10−5 6.43×10−5 7.08×10−5 7.40×10−5 7.88×10−5 7.88×10−5
    下载: 导出CSV

    表  2  给定能量、平板厚度条件下背向产额的蒙卡模拟值与计算公式对比

    Table  2.   Comparison between Monte Carlo simulations and analytical formula predictions for backward electron yields at given energies and plate thicknesses

    E/keV YMC YEq relative error/% YMC YEq relative error/% YMC YEq relative error/%
    t=0.075 mm t=0.5 mm t=2.5 mm
    0.5 2.99×10−3 3.07×10−3 2.78 2.99×10−3 3.07×10−3 2.78 2.99×10−3 3.07×10−3 −2.71
    3 3.78×10−3 3.74×10−3 −1.06 3.78×10−3 3.74×10−3 −1.06 3.78×10−3 3.74×10−3 −1.06
    6 2.09×10−3 2.13×10−3 1.73 2.09×10−3 2.13×10−3 1.72 2.09×10−3 2.13×10−3 1.72
    9 1.38×10−3 1.36×10−3 −1.44 1.38×10−3 1.36×10−3 −1.51 1.38×10−3 1.36×10−3 −1.51
    15 6.24×10−4 6.58×10−4 5.35 6.29×10−4 6.58×10−4 4.64 6.29×10−4 6.58×10−4 4.61
    35 1.84×10−4 1.95×10−4 6.03 1.90×10−4 2.01×10−4 5.33 2.02×10−4 2.15×10−4 5.98
    55 8.86×10−5 8.59×10−5 −3.07 9.39×10−5 8.95×10−5 −4.72 1.07×10−4 1.02×10−4 −4.61
    75 5.17×10−5 5.05×10−5 −2.38 5.50×10−5 5.31×10−5 −3.37 6.61×10−5 6.36×10−5 −3.80
    95 3.47×10−5 3.83×10−5 10.11 3.75×10−5 4.04×10−5 7.67 4.66×10−5 4.91×10−5 5.57
    下载: 导出CSV

    表  3  40 keV光子入射不同厚度平板三种方式得到前向出射电子产额结果对比

    Table  3.   Comparison of forward electron yields obtained via three methods for 40 keV photons incident on plates of varying thicknesses

    t/mm YMC YEq6 YEq8 YEq6 relative error/% YEq8 relative error/%
    0.10 3.01×10−4 3.03×10−4 3.04×10−4 0.96 1.10
    0.25 2.98×10−4 2.96×10−4 2.99×10−4 −0.55 0.37
    0.50 2.92×10−4 2.85×10−4 2.92×10−4 −2.18 0.01
    0.75 2.85×10−4 2.75×10−4 2.84×10−4 −3.51 −0.11
    1.00 2.77×10−4 2.64×10−4 2.77×10−4 −4.73 −0.16
    2.00 2.49×10−4 2.27×10−4 2.49×10−4 −8.95 −0.14
    3.00 2.22×10−4 1.94×10−4 2.22×10−4 −12.41 0.08
    4.00 1.97×10−4 1.67×10−4 1.98×10−4 −15.57 0.11
    5.00 1.75×10−4 1.43×10−4 1.75×10−4 −18.44 0.01
    10.00 9.30×10−5 6.64×10−5 9.26×10−5 −28.63 −0.44
    下载: 导出CSV

    表  4  给定能量、平板厚度条件下前向电子产额的蒙卡模拟值与计算公式对比

    Table  4.   Comparison between Monte Carlo simulations and analytical formula predictions for forward electron yields at given energies and plate thicknesses

    E/keV YMC Yeq relative error/% YMC Yeq relative error/% YMC Yeq relative error/%
    t=0.075 mm t=0.5 mm t=2.5 mm
    3 0 4.42×10−10 0 2.40×10−49 0 0
    6 1.98×10−4 1.99×10−4 0.86 0 3.66×10−10 0 3.65×10−37
    9 6.79×10−4 6.36×10−4 −6.41 8.80×10−6 8.05×10−6 −8.52 0 9.37×10−15
    15 8.18×10−4 7.40×10−4 −9.56 3.40×10−4 3.04×10−4 −10.79 4.88×10−6 4.53×10−6 −7.21
    35 3.57×10−4 3.58×10−4 0.32 3.43×10−4 3.32×10−4 −3.19 2.45×10−4 2.30×10−4 −6.08
    55 2.12×10−4 2.08×10−4 −1.82 2.09×10−4 2.05×10−4 −2.02 1.94×10−4 1.89×10−4 −2.64
    75 1.56×10−4 1.58×10−4 1.20 1.58×10−4 1.58×10−4 −0.02 1.54×10−4 1.53×10−4 −0.25
    95 1.40×10−4 1.42×10−4 1.21 1.41×10−4 1.42×10−4 0.99 1.37×10−4 1.41×10−4 3.07
    下载: 导出CSV
  • [1] 孟萃. 瞬态电离辐射激励强电磁脉冲[M]. 北京: 清华大学出版社, 2022: 85

    Meng Cui. Transient ionizing radiation induced intense electromagnetic pulse[M]. Beijing: Tsinghua University Press, 2022: 85
    [2] 王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101
    [3] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [4] 陈剑楠, 陶应龙, 牛胜利. X射线辐照圆柱腔体SGEMP电子发射参数的计算[J]. 现代应用物理, 2020, 11: 010501 doi: 10.12061/j.issn.2095-6223.2020.010501

    Chen Jiannan, Tao Yinglong, Niu Shengli. Calculation of electron emission parameter of SGEMP in cylinder cavity irradiated by X-rays[J]. Modern Applied Physics, 2020, 11: 010501 doi: 10.12061/j.issn.2095-6223.2020.010501
    [5] Dolan K W. X-ray-induced electron emission from metals[J]. Journal of Applied Physics, 1975, 46(6): 2456-2463. doi: 10.1063/1.322229
    [6] Bernstein M J, Paschen K W. Forward and backward photoemission yields from metals at various X-ray angles of incidence[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 111-116. doi: 10.1109/TNS.1973.4327380
    [7] Chadsey W L, Wilson C W, Pine V W. X-ray photoemission calculations[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2345-2350. doi: 10.1109/TNS.1975.4328131
    [8] Dellin T A, MacCallum C J. Photo-Compton currents emitted from a surface[J]. Journal of Applied Physics, 1975, 46(7): 2924-2934. doi: 10.1063/1.322022
    [9] Dellin T A, Huddleston R E, MacCallum C J. Second generation analytical photo-Compton current methods[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2549-2555. doi: 10.1109/TNS.1975.4328166
    [10] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environment[J]. Modern Applied Physics, 2023, 14: 030104
    [11] 张含天, 陈剑楠, 周前红, 等. 系统电磁脉冲建模与数值模拟研究进展[J]. 电波科学学报, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034

    Zhang Hantian, Chen Jiannan, Zhou Qianhong, et al. Progress in modeling and numerical simulation of system generated electromagnetic pulse[J]. Chinese Journal of Radio Science, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034
    [12] 孙会芳, 易涛, 董志伟, 等. 神光装置辐照腔体系统电磁脉冲的数值模拟[J]. 强激光与粒子束, 2024, 36: 043024 doi: 10.11884/HPLPB202436.230273

    Sun Huifang, Yi Tao, Dong Zhiwei, et al. Simulation of cavity system generated electromagnetic pulse radiated by SG-facility[J]. High Power Laser and Particle Beams, 2024, 36: 043024 doi: 10.11884/HPLPB202436.230273
    [13] 李进玺, 吴伟, 郭景海, 等. “闪光二号”环境中系统电磁脉冲计算模型的验证[J]. 现代应用物理, 2016, 7: 030503 doi: 10.3969/j.issn.2095-6223.2016.03.005

    Li Jinxi, Wu Wei, Guo Jinghai, et al. Verification of numerical simulation model for SGEMP generated in flash-Ⅱ accelerator environment[J]. Modern Applied Physics, 2016, 7: 030503 doi: 10.3969/j.issn.2095-6223.2016.03.005
    [14] 陈剑楠, 陶应龙, 陈再高, 等. 系统电磁脉冲模拟中的发射电子参数计算[J]. 现代应用物理, 2018, 9: 040501 doi: 10.12061/j.issn.2095-6223.2018.040501

    Chen Jiannan, Tao Yinglong, Chen Zaigao, et al. Calculation of emission electron parameter in simulation of SGEMP[J]. Modern Applied Physics, 2018, 9: 040501 doi: 10.12061/j.issn.2095-6223.2018.040501
    [15] Chen Jiannan, Wang Jianguo, Tao Yinglong, et al. Simulation of SGEMP using particle-in-cell method based on conformal technique[J]. IEEE Transactions on Nuclear Science, 2019, 66(5): 820-826. doi: 10.1109/TNS.2019.2911933
    [16] Bradford J N. X-ray induced electron emission II[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 105-110. doi: 10.1109/TNS.1973.4327379
    [17] Woods A J, Wenaas E P. Photon source SGEMP spectrum evaluations[R]. Sandia National Laboratories, 1978.
    [18] Storm L, Israel H I. Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100[J]. Atomic Data and Nuclear Data Tables, 1970, 7(6): 565-681. doi: 10.1016/S0092-640X(70)80017-1
    [19] Berger M J. Monte Carlo calculation of the penetration and diffusion of fast charged particles[M]//Alder B, Fernbach S, Rotenberg M. Methods in Computational Physics, Vol. 1. New York: Academic Press, 1963: 135.
    [20] Seltzer S M. Cross sections for bremsstrahlung production and electron-impact ionization[M]//Jenkins T M, Nelson W R, Rindi A. Monte Carlo Transport of Electrons and Photons. Boston: Springer, 1988: 81.
    [21] 夏益华. 高等电离辐射防护教程[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010: 87

    Xia Yihua. Advanced course on ionizing radiation protection[M]. Harbin: Harbin Engineering University Press, 2010: 87
    [22] 乔海亮, 谢海燕, 刘钰. 基于人工神经网络的HEMP-E1环境快速预测模型[J]. 现代应用物理, 2025, 16: 011318 doi: 10.12061/j.issn.2095-6223.202501011

    Qiao Hailiang, Xie Haiyan, Liu Yu. A fast prediction model for HEMP-E1 environment based on artificial neural network[J]. Modern Applied Physics, 2025, 16: 011318 doi: 10.12061/j.issn.2095-6223.202501011
    [23] 游检卫, 张嘉男, 刘彻, 等. 智能计算电磁学及其超材料智能设计应用[J]. 现代应用物理, 2025, 16: 011301 doi: 10.12061/j.issn.2095-6223.202412045

    You Jianwei, Zhang Jianan, Liu Che, et al. Intelligent computational electromagnetics and its applications in intelligent design of metamaterials[J]. Modern Applied Physics, 2025, 16: 011301 doi: 10.12061/j.issn.2095-6223.202412045
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  77
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-15
  • 修回日期:  2025-08-21
  • 录用日期:  2025-08-21
  • 网络出版日期:  2025-09-02
  • 刊出日期:  2025-10-15

目录

    /

    返回文章
    返回