留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Peak current reduction in presence of RF phase modulation in the dual RF system

Jiang Bocheng Zhang Yao Tsai Cheng-Ying

姜伯承, 张耀, 蔡承颖. 在双高频系统中采用相位调制方法降低束团峰值流强[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250136
引用本文: 姜伯承, 张耀, 蔡承颖. 在双高频系统中采用相位调制方法降低束团峰值流强[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250136
Jiang Bocheng, Zhang Yao, Tsai Cheng-Ying. Peak current reduction in presence of RF phase modulation in the dual RF system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250136
Citation: Jiang Bocheng, Zhang Yao, Tsai Cheng-Ying. Peak current reduction in presence of RF phase modulation in the dual RF system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250136

在双高频系统中采用相位调制方法降低束团峰值流强

doi: 10.11884/HPLPB202638.250136
详细信息
  • 中图分类号: TL506 

Peak current reduction in presence of RF phase modulation in the dual RF system

Funds: National Natural Science Foundation of China (12405168); The Fundamental Research Funds for the Central Universities, China (2024CDJXY004)
More Information
  • 摘要: 高次谐波腔在电子储存环中被广泛应用,他可以拉伸电子束团长度、降低束团峰值电流,从而减弱束内散射(IBS)效应、提高Touschek寿命,并提供Landau阻尼,这对于运行在超低发射度或低能区的储存环尤为重要。为了在不增加额外硬件成本的情况下进一步展拉伸团长度,研究在双高频系统中的相位调制方案。进行了逐圈模拟跟踪,跟踪程序包含了纵向运动逐圈迭代(包括相位调制)和同步辐射激发效应,并给出了相位调制引起束团展宽机理的简要理论分析。模拟结果表明,束团峰值电流可以在高次谐波腔作用后,经相位调制后进一步降低,从而减弱IBS效应并提高Touschek寿命。尽管调制会引起能散增加,导致来波荡器辐射的高次谐波辐射亮度降低,但基波辐射的亮度得到了提升。
  • Figure  1.  RMS bunch length, energy spread and particle distribution in longitudinal coordinate

    Figure  2.  Third-harmonic cavity working in an optimized status

    Figure  3.  Third-harmonic cavity working in an overstretched status. The electrons plotted in magenta and red dot in (b) have the frequency indicated by the color bar in (c)

    Figure  4.  Beam current profile and phase space for the dual RF over stretched case with RF phase modulation

    Figure  5.  RF modulation at different frequencies

    Figure  6.  Bunch centroid oscillation driven by RF modulation

    Figure  7.  Beam current profile for single RF modulation

    Figure  8.  Electron trajectories in phase space without radiation damping and quantum excitation

    Figure  9.  Brightness of undulator radiation

    Table  1.   Beam parameters for simulation

    beam energy/GeV ring circumference/m momentum compaction energy loss per turn/keV initial energy spread/%
    0.5 76.78 8.15×10−3 4.34 0.038
    initial bunch length/mm main RF frequency/MHz main RF voltage/kV longitudinal damping time/ms bending magnet field/T
    2.4 499.8 750 29.5 1.31
    下载: 导出CSV

    Table  2.   Parameters for Touschek lifetime calculation and undulator parameters used for radiation calculation

    natural emittance/(nm·rad) transverse coupling βx/m βy/m beam current/mA bunches undulator periods/mm undulator length/m
    8.5 10% 7.5 4 500 100 20 3
    下载: 导出CSV
    emittance counting IBS/(nm·rad) energy spread counting IBS/10−4 touschek lifetime/h
    single
    RF
    dual
    RF
    dual RF with
    RF modulation
    single
    RF
    dual
    RF
    dual RF with
    RF modulation
    single
    RF
    dual
    RF
    dual RF with
    RF modulation
    16.2 10.7 8.9 5.6 4.5 9.6 1.4 7.1 20.7
    下载: 导出CSV
  • [1] Bernardini C, Corazza G F, Di Giugno G, et al. Lifetime and beam size in a storage ring[J]. Physical Review Letters, 1963, 10(9): 407-409. doi: 10.1103/PhysRevLett.10.407
    [2] Ehrlichman M P, Hartung W, Heltsley B, et al. Intrabeam scattering studies at the cornell electron storage ring test accelerator[J]. Physical Review Special Topics - Accelerators and Beams, 2013, 16: 104401. doi: 10.1103/PhysRevSTAB.16.104401
    [3] Tian Saike, Wang Jiuqing, Xu Gang, et al. Intra-beam scattering studies for low emittance at BAPS[J]. Chinese Physics C, 2015, 39: 067001. doi: 10.1088/1674-1137/39/6/067001
    [4] Kubo K, Oide K. Intrabeam scattering in electron storage rings[J]. Physical Review Special Topics - Accelerators and Beams, 2001, 4: 124401. doi: 10.1103/PhysRevSTAB.4.124401
    [5] Bane K L F, Hayano H, Kubo K, et al. Intrabeam scattering analysis of measurements at KEK’s Accelerator Test Facility damping ring[J]. Physical Review Special Topics - Accelerators and Beams, 2002, 5: 084403. doi: 10.1103/PhysRevSTAB.5.084403
    [6] Piwinski A. Intrabeam scattering[C]//Proc. 9th Int. Conf. High Energy Accel. 1975: 405-409.
    [7] Bjorken J D, Mtingwa S K. Intrabeam scattering[J]. Particle Accelerators, 1983, 13: 115-143.
    [8] Leemann S C. Interplay of Touschek scattering, intrabeam scattering, and rf cavities in ultralow-emittance storage rings[J]. Physical Review Special Topics - Accelerators and Beams, 2014, 17: 050705. doi: 10.1103/PhysRevSTAB.17.050705
    [9] Fan Wei, Bai Zhenghe, Gao Weiwei, et al. Physics issues in diffraction limited storage ring design[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(5): 802-807. doi: 10.1007/s11433-012-4696-7
    [10] Du Chongchong, Wang Jiuqing, Ji Daheng, et al. Studies of round beam at HEPS storage ring by driving linear difference coupling resonance[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 976: 164264. doi: 10.1016/j.nima.2020.164264
    [11] Phimsen T, Jiang Bocheng, Hou Hongtao, et al. Improving Touschek lifetime and synchrotron frequency spread by passive harmonic cavity in the storage ring of SSRF[J]. Nuclear Science and Techniques, 2017, 28: 108. doi: 10.1007/s41365-017-0259-y
    [12] Zhao Yuning, Li Weimin, Wu Congfeng et al. Study of Robinson instabilities with a higher-harmonic cavity for the HLS phase II project[J]. Chinese Physics C, 2012, 36(11): 1136-1139. doi: 10.1088/1674-1137/36/11/018
    [13] Feng H, De Santis S, Baptiste K, et al. Proposed design and optimization of a higher harmonic cavity for ALS-U[J]. Review of Scientific Instruments, 2020, 91: 014712. doi: 10.1063/1.5135955
    [14] Byrd J M, De Santis S, Jacob J, et al. Transient beam loading effects in harmonic rf systems for light sources[J]. Physical Review Special Topics - Accelerators and Beams, 2002, 5: 092001. doi: 10.1103/PhysRevSTAB.5.092001
    [15] Byrd J M, Georgsson M. Lifetime increase using passive harmonic cavities in synchrotron light sources[J]. Physical Review Special Topics - Accelerators and Beams, 2001, 4: 030701. doi: 10.1103/PhysRevSTAB.4.030701
    [16] Perez F, Alvarez J, Bellafont I, et al. Active harmonic EU cavity: Commissioning and operation with beam[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2025, 1072: 170195. doi: 10.1016/j.nima.2024.170195
    [17] Biscardi R, Ramirez G. RF system for bunch lengthening[C]//Proceedings Particle Accelerator Conference. 1995: 1660-1662.
    [18] Sakanaka S, Izawa M, Mitsuhashi T, et al. Improvement in the beam lifetime by means of an rf phase modulation at the KEK Photon Factory storage ring[J]. Physical Review Special Topics - Accelerators and Beams, 2000, 3: 050701. doi: 10.1103/PhysRevSTAB.3.050701
    [19] Huang Guirong, Xu Hongliang, Liu Gongfa. Experiment of RF modulation at HLS[J]. Chinese Physics C, 2006, 30(6): 559-561.
    [20] Orsini F, Mosnier A. Effectiveness of rf phase modulation for increasing bunch length in electron storage rings[J]. Physical Review E, 2000, 61: 4431. doi: 10.1103/PhysRevE.61.4431
    [21] Abreu N P, Farias R H A, Tavares P F. Longitudinal dynamics with rf phase modulation in the Brazilian electron storage ring[J]. Physical Review Special Topics - Accelerators and Beams, 2006, 9: 124401. doi: 10.1103/PhysRevSTAB.9.124401
    [22] Byrd J M, Cheng W H, Zimmermann F. Nonlinear effects of phase modulation in an electron storage ring[J]. Physical Review E, 1998, 57(4): 4706-4712. doi: 10.1103/PhysRevE.57.4706
    [23] Jeon D, Ball M, Budnick J, et al. A mechanism of anomalous diffusion in particle beams[J]. Physical Review Letters, 1998, 80(11): 2314-2317. doi: 10.1103/PhysRevLett.80.2314
    [24] Lee S Y, Caussyn D D, Ellison M, et al. Parametric resonances in synchrotrons with two rf systems[J]. Physical Review E, 1994, 49: 5717. doi: 10.1103/PhysRevE.49.5717
    [25] Zhang Yao, Jiang Bocheng, Bai Zhenghe, et al. A high-current low-energy storage ring for photon-hungry applications[C]//14th International Particle Accelerator Conference. 2023: 368-371.
    [26] Chao A W, Mess K H, Tigner M, et al. Handbook of accelerator physics and engineering[M]. 2nd ed. Singapore: World Scientific, 1999.
    [27] Tanaka T, Kitamura H. SPECTRA: a synchrotron radiation calculation code[J]. Journal of Synchrotron Radiation, 2001, 8(6): 1221-1228. doi: 10.1107/S090904950101425X
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-16
  • 修回日期:  2025-10-04
  • 录用日期:  2025-10-16
  • 网络出版日期:  2025-12-08

目录

    /

    返回文章
    返回