留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫秒充电条件下提升气体触发开关重频稳定性

张昊冉 邱旭东 张墨涛 邵帅 张瑜 李锐

张昊冉, 邱旭东, 张墨涛, 等. 毫秒充电条件下提升气体触发开关重频稳定性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250204
引用本文: 张昊冉, 邱旭东, 张墨涛, 等. 毫秒充电条件下提升气体触发开关重频稳定性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250204
Zhang Haoran, Qiu Xudong, Zhang Motao, et al. Research on improving the repetition-rate stability of triggered gas gap switch under millisecond charging conditions[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250204
Citation: Zhang Haoran, Qiu Xudong, Zhang Motao, et al. Research on improving the repetition-rate stability of triggered gas gap switch under millisecond charging conditions[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250204

毫秒充电条件下提升气体触发开关重频稳定性

doi: 10.11884/HPLPB202638.250204
详细信息
    作者简介:

    张昊冉,zhanghaoran@nint.ac.cn

    通讯作者:

    李 锐,lirui@nint.ac.cn

  • 中图分类号: TM85

Research on improving the repetition-rate stability of triggered gas gap switch under millisecond charging conditions

  • 摘要: 毫秒(ms)充电的PFN-Marx型脉冲驱动源在轻量化、小型化实现方面具有较大潜力,为实现其长寿命稳定可靠运行,需解决的关键技术之一是提升气体触发开关重频稳定性。研制了一套基于电晕稳定开关工作原理的气体触发开关,以解决ms充电条件下开关工作电压分散性大、触发电极烧蚀过快的难题。围绕该开关开展了结构设计、静电场仿真、触发器研制、触发开关工作范围、时延及其抖动等研究,解决了ms充电条件下开关发生自击穿或触而未发概率高的问题。实验研究结果表明:所设计触发开关在工作气体SF6、气压0.6 MPa的条件下,开关最高工作电压达到90 kV,在开关工作电压84 kV、重频20 Hz、串内脉冲数500个、开关不换气的条件下,连续累计测试开关寿命10万次,期间仅出现1次自击穿,自击穿率<0.01‰,初步实现了电触发开关具有一定工作范围和寿命的设计目标。
  • 图  1  气体开关试验平台示意图

    Figure  1.  Schematic diagram of the gas switch test platform

    图  2  典型两电极开关结构示意图

    Figure  2.  Schematic diagram of a typical two-electrode switch

    图  3  典型ms充电条件下开关重频自击穿电压波形

    Figure  3.  Typical self-breakdown waveforms of the switch

    图  4  开关自击穿电压分布

    Figure  4.  Self-breakdown voltage distribution of the switch

    图  5  环形电晕触发开关结构示意图

    Figure  5.  Schematic diagram of the annular corona trigger switch

    图  6  环形电晕触发开关静电场仿真模型及电场分布云图

    Figure  6.  Simulation model of E-field of the annular corona trigger switch

    图  7  开关电极表面场强分布

    Figure  7.  The electric field distribution on the surface of the switching electrode

    图  8  磁饱和Marx触发器输出波形

    Figure  8.  Waveforms of the trigger source

    图  9  无触发极触发开关自击穿电压

    Figure  9.  Self-breakdown voltage of the switch without trigger electrode

    图  10  有触发极触发开关自击穿电压

    Figure  10.  Self-breakdown voltage of the switch with trigger electrode

    图  11  重复频率对开关工作电压影响

    Figure  11.  Influence of repetition-rate on the working voltage of the switch

    图  12  典型触发开关重频500个脉冲叠加波形

    Figure  12.  Typical working waveforms of the switch

    图  13  不同气压下触发开关工作范围

    Figure  13.  Working range of the switch under different SF6 pressures

    图  14  开关工作欠压比对触发脉冲幅值的影响

    Figure  14.  Influence of the under-voltage ratio of the switch operation on the amplitude of the trigger pulse

    图  15  开关触发时延及抖动

    Figure  15.  Time delay of triggering and its jitter

    图  16  环形电晕触发开关寿命考核前1万次累计叠加波形

    Figure  16.  The 10 k superimposed waveforms

    图  17  环形电晕触发开关寿命考核后续8万余次累计叠加波形

    Figure  17.  Superimposed waveforms over 80 k

    图  18  环形电晕触发开关10万次寿命周期工作区间

    Figure  18.  Working range of the annular corona trigger switch during105 pulses

  • [1] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003

    Zeng Zhengzhong. Introduction to practical pulsed power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003
    [2] Song Falun, Li Fei, Zhang Beizhen, et al. A compact low jitter high power repetitive long-pulse relativistic electron beam source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 919: 56-63.
    [3] Park S S, Heo H, Choi O R, et al. Repetitive test of PFN Marx for pulse generator[C]//28th IEEE Power Modulator Symposium. 2008: 28-31.
    [4] Zhang Huibo, Yang Jianhua, Lin Jiajin, et al. A compact bipolar pulse-forming network-Marx generator based on pulse transformers[J]. Review of Scientific Instruments, 2013, 84: 114705. doi: 10.1063/1.4828793
    [5] 李志强, 杨建华, 张建德, 等. 紧凑重频PFN-Marx脉冲发生器[J]. 强激光与粒子束, 2016, 28: 015013 doi: 10.11884/HPLPB201628.015013

    Li Zhiqiang, Yang Jianhua, Zhang Jiande, et al. A compact repetitive PFN-Marx generator[J]. High Power Laser and Particle Beams, 2016, 28: 015013 doi: 10.11884/HPLPB201628.015013
    [6] Neuber A A, Chen Y J, Dickens J C, et al. A compact, repetitive, 500kV, 500 J, Marx generator[C]//2005 IEEE Pulsed Power Conference. 2005: 1203-1206.
    [7] 伍友成, 何泱, 戴文峰, 等. 基于快Marx发生器的紧凑型重频脉冲驱动源[J]. 高电压技术, 2017, 43(12): 4302-4308

    Wu Youcheng, He Yang, Dai Wenfeng, et al. Compact repetitive pulsed power system based on fast Marx generator[J]. High Voltage Engineering, 2017, 43(12): 4302-4308
    [8] 刘宏伟, 谢卫平, 李洪涛, 等. 紧凑型电感隔离快Marx发生器[J]. 高电压技术, 2008, 34(7): 1436-1439

    Liu Hongwei, Xie Weiping, Li Hongtao, et al. Compact inductively isolated fast Marx generator[J]. High Voltage Engineering, 2008, 34(7): 1436-1439
    [9] 张永鹏, 杨兰均, 路志建, 等. 宽工作系数大容量四电极紫外预电离气体开关[J]. 高电压技术, 2021, 47(12): 4368-4376

    Zhang Yongpeng, Yang Lanjun, Lu Zhijian, et al. Four-electrode UV pre-ionization gas switch with wide operating coefficient and large capacity[J]. High Voltage Engineering, 2021, 47(12): 4368-4376
    [10] 李俊娜, 邱爱慈, 蒯斌, 等. 自耦式紫外预电离开关特性[J]. 强激光与粒子束, 2008, 20(6): 994-998

    Li Junna, Qiu Aici, Kuai Bin, et al. Characteristics of capacitance-resistance coupling UV illumination switch[J]. High Power Laser and Particle Beams, 2008, 20(6): 994-998
    [11] 王天驰, 谢霖燊, 李俊娜, 等. 兆伏级串级自触发开关脉冲击穿特性影响机制及优化[J]. 清华大学学报(自然科学版), 2023, 63(1): 114-124

    Wang Tianchi, Xie Linshen, Li Junna, et al. Influence mechanisms and optimization of pulsed breakdown characteristics of a megavolt class cascade self-triggered switch[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(1): 114-124
    [12] 邱云, 金晓, 宋法伦, 等. 针板型电晕稳定开关的电晕稳定性[J]. 强激光与粒子束, 2010, 22(3): 545-549 doi: 10.3788/HPLPB20102203.0545

    Qiu Yun, Jin Xiao, Song Falun, et al. Stabilization performance of rod-plane corona stabilized switch[J]. High Power Laser and Particle Beams, 2010, 22(3): 545-549 doi: 10.3788/HPLPB20102203.0545
    [13] 李嵩, 高景明, 刘啸, 等. 基于紫外预电离气体开关的低阻抗高压脉冲发生器技术研究[C]//全国脉冲功率会议. 2019: 521-525

    Li Song, Gao Jingming, Liu Xiao, et al. Investigation on low impedance high voltage generator based on UV preionization gap switch[C]//China Pulsed Power Conference. 2019: 521-525
    [14] Given M J, Wilson M P, Timoshkin I V, et al. The triggered behavior of a controlled corona stabilized cascade switch[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2470-2479. doi: 10.1109/TPS.2012.2206058
    [15] Beveridge J R, Macgregor S J, Given M J, et al. A corona-stabilized plasma closing switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 948-955. doi: 10.1109/TDEI.2009.5211838
    [16] Geng Jiuyuan, Yang Jianhua, Cheng Xinbing, et al. The development of high-voltage repetitive low-jitter corona stabilized triggered switch[J]. Review of Scientific Instruments, 2018, 89: 044705. doi: 10.1063/1.5011089
    [17] 王刚, 张喜波, 刘胜, 等. 一种百千伏多级电晕稳定开关[J]. 现代应用物理, 2019, 10: 030402

    Wang Gang, Zhang Xibo, Liu Sheng, et al. A 100 kV multi-stage corona-stabilized switch[J]. Modern Applied Physics, 2019, 10: 030402
    [18] Koutsoubis J M, Thoma K, Macgregor S J. Electrode erosion and lifetime performance of a triggered corona-stabilized switch in SF6 at a repetition rate of 1 kHz[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 1985-1995. doi: 10.1109/TDEI.2016.7556470
    [19] Chen Rong, Yang Jianhua, Cheng Xinbing, et al. An all-solid-state microsecond-range quasi-square pulse generator based on fractional-turn ratio saturable pulse transformer and anti-resonance network[J]. Review of Scientific Instruments, 2017, 88: 034701. doi: 10.1063/1.4977219
  • 加载中
图(18)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  30
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-09
  • 修回日期:  2025-08-05
  • 录用日期:  2025-08-28
  • 网络出版日期:  2025-11-21

目录

    /

    返回文章
    返回