留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性堆叠结构环氧树脂复合材料的热防护性能

李佳蓬 夏岚松 张平 刘东

李佳蓬, 夏岚松, 张平, 等. 各向异性堆叠结构环氧树脂复合材料的热防护性能[J]. 强激光与粒子束, 2020, 32: 031003. doi: 10.11884/hplpb202032.190342
引用本文: 李佳蓬, 夏岚松, 张平, 等. 各向异性堆叠结构环氧树脂复合材料的热防护性能[J]. 强激光与粒子束, 2020, 32: 031003. doi: 10.11884/hplpb202032.190342
Li Jiapeng, Xia Lansong, Zhang Ping, et al. Anisotropic stacked epoxy composites with excellent thermal properties[J]. High Power Laser and Particle Beams, 2020, 32: 031003. doi: 10.11884/hplpb202032.190342
Citation: Li Jiapeng, Xia Lansong, Zhang Ping, et al. Anisotropic stacked epoxy composites with excellent thermal properties[J]. High Power Laser and Particle Beams, 2020, 32: 031003. doi: 10.11884/hplpb202032.190342

各向异性堆叠结构环氧树脂复合材料的热防护性能

doi: 10.11884/hplpb202032.190342
基金项目: 国家自然科学基金项目(51306156);西南科技大学龙山人才计划项目(17LZX647,18lzx509);西南科技大学研究生创新基金项目(19ycx0089)
详细信息
    作者简介:

    李佳蓬(1995—),男,硕士,从事仪器设备热防护研究,13699621216@qq.com

    通讯作者:

    刘 东(1984—),男,副教授,博士,从事电子设备热设计方面的研究,dtld123@126.com

  • 中图分类号: TQ320

Anisotropic stacked epoxy composites with excellent thermal properties

  • 摘要: 基于导热-隔热原理,通过在环氧树脂(Epon)中添加质量分数为5%,15%,25%的六方氮化硼(h-BN)作为填料制备环氧基散热层,质量分数为1%的膨胀蛭石(E-ver)作为填料制备环氧基隔热层,设计了宏观交替堆叠的环氧复合材料,并进行了热防护性能的研究。研究结果表明:具有各向异性结构的复合材料,顶部中心温度较传统材料的温度下降13~16 ℃,热延迟时间大大提升,并随着h-BN含量的增加,热性能得到明显改善。理论分析了该堆叠结构下复合材料“横向散热、纵向抑热”的机理。
  • 图  1  堆叠复合材料制备原理图

    Figure  1.  Schematic illustration of the preparation of the multilayered composites

    图  2  热性能测试平台

    Figure  2.  Experimental device for thermal performance testing

    图  3  (a)堆叠结构样品模型;(b)复合材料横截面的光学显微镜图(c)h-BN(25%质量分数)散热微层的扫描电镜图;(d)膨胀蛭石(1%质量分数)隔热微层的扫描电镜图

    Figure  3.  (a) The sample model of stacked composites; (b) The optical microscope image of interfacial morphology; (c) The SEM image of h-BN(25%) filled epoxy resin composites; (d) The SEM image of E-ver (1%) filled epoxy resin composites.

    图  4  (a)样品顶部温度随时间变化曲线;(b)样品侧边温度随时间变化曲线(底部为80 ℃面热源)

    Figure  4.  (a) Top center temperature curves of composites; (b) side-pointing temperature curves (the bottom is 80 ℃)

    图  5  (a)各向异性堆叠复合材料热防护机理图;(b)样品顶部温度随时间变化曲线(底部为120 ℃面热源)

    Figure  5.  (a)Heat transfer mechanism of multilayered composites;(b)Top center temperature curves of composites (bottom is 120 ℃)

    图  6  样品顶部中心温度随时间变化曲线(自然降温)

    Figure  6.  Top center temperature curves of the composites under natural cooling

  • [1] 王文, 褚金雷, 高欣, 等. 基于多芯片封装的半导体激光器热特性[J]. 强激光与粒子束, 2014, 26:011015. (Wang Wen, Chu Jinlei, Gao Xin, et al. Thermal characteristics of semiconductor laser based on multi-chip packaging[J]. High Power Laser and Particle Beams, 2014, 26: 011015
    [2] 胡慧慧, 李凡, 李立群. 环氧树脂基导热绝缘复合材料的研究进展[J]. 绝缘材料, 2011, 44(5):27-30. (Hu Huihui, Li fan, Li Liqun. Progress in epoxy-based thermal conductive insulating composites[J]. Insulating Materials, 2011, 44(5): 27-30
    [3] 陈敏孙, 江厚满, 刘泽金. 玻璃纤维/环氧树脂复合材料热分解动力学参数的确定[J]. 强激光与粒子束, 2010, 22(9):1971-1973. (Chen Minsun, Jiang Houman, Liu Zejin. Determination of thermal decomposition kinetic parameters of glass-fiber/epoxy composite[J]. High Power Laser and Particle Beams, 2010, 22(9): 1971-1973
    [4] Mu Mulan, Wan Chaoying, Tony M. Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins[J]. 2D Materials, 2017, 4(4): 537-545.
    [5] Zhang Xiaomeng, Zhang Jiajia, Zhang Xianlong, et al. Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC[J]. Composites Science and Technology, 2017, 5(150): 217-226.
    [6] 冷鑫钰, 肖超, 陈璐, 等. 环氧树脂中3D氮化硼复合导热网络的构筑及性能[J]. 高分子材料科学与工程, 2019, 35(3):102-106. (Leng Xinyu, Xiao Chao, Chen Lu, et al. Constructing of 3D mirco-nano boron nitride networks in epoxy resin and characterization[J]. Polymer Materials Science and Engineering, 2019, 35(3): 102-106
    [7] 习永广, 彭同江. 膨胀蛭石/石膏复合保温材料的制备与表征[J]. 复合材料学报, 2011, 28(5):156-161. (Xi Yongguang, Peng Tongjiang. Preparation and characterization of expanded vermiculite/gypsum thermal insulation composites[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 156-161
    [8] Shukla M, Sharma K. Effect of carbon nanofillers on the mechanical and interfacial properties of epoxy based nanocomposites: A review[J]. Composites Science and Technology, 2019, 61(4): 439-436.
    [9] Zhao Kang, Li Suishui, Huang Ming, et al. Remarkably anisotropic conductive MWCNTs /polypropylene nanocomposites with alternating microlayers[J]. Chemical Engineering Journal, 2019, 358(4): 924-935.
    [10] Yang Shuya, Huang Yanfei, Lei Jun, et al. Enhanced thermal conductivity of polyethylene/boron nitride multilayer sheets through annealing[J]. Composites: Part A, 2018, 107(8): 135-143.
    [11] Jiang Fang, Cui Siqi, Song Na, et al. Hydrogen bond regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites[J]. ACS Appl Mater Interfaces, 2018, 10(19): 16812-16821. doi: 10.1021/acsami.8b03522
  • 加载中
图(6)
计量
  • 文章访问数:  797
  • HTML全文浏览量:  333
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-07
  • 修回日期:  2019-11-05
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回