| Citation: | Li Yaodong, Yu Ganglin, Li Wanlin, et al. Xenon oscillation analysis in Monte Carlo burnup calculation[J]. High Power Laser and Particle Beams, 2018, 30: 036004. doi: 10.11884/HPLPB201830.170228 |
| [1] |
佘顶. 基于自主堆用蒙卡程序RMC的燃耗与源收敛问题研究[D]. 北京: 清华大学, 2013.
She Ding. Study on the burn-up and source convergence of RMC based on Monarch program. Beijing: Tsinghua University, 2013
|
| [2] |
余纲林, 王侃, 王煜宏. MCBurn—MCNP和ORIGEN耦合程序系统[J]. 原子能科学技术, 2003, 37 (3): 250-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200303013.htm
Yu Ganglin, Wang Kan, Wang Yuhong. MCBurn—MCNP and ORIGEN coupling program system. Atomic Energy Science and Technology, 2003, 37 (3): 250-254 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200303013.htm
|
| [3] |
Isotalo A, Leppänen J, Dufek J. Preventing xenon oscillations in Monte Carlo burnup calculations by enforcing equilibrium xenon distribution[J]. Annals of Nuclear Energy, 2013, 60 : 78-85. doi: 10.1016/j.anucene.2013.04.031
|
| [4] |
张法邦, 吴清泉. 核反应堆运行物理[M]. 北京: 原子能出版社, 2000.
Zhang Fabang, Wu Qingquan. Nuclear physics in reactor operation. Beijing: Atomic Energy Press, 2000
|
| [5] |
Dufek J, Kotlyar D, Shwageraus E, et al. Numerical stability of the predictor-corrector method in Monte Carlo burnup calculations of critical reactors[J]. Annals of Nuclear Energy, 2013, 56 : 34-38. doi: 10.1016/j.anucene.2013.01.018
|
| [6] |
Dufek J, Kotlyar D, Shwageraus E. The stochastic implicit Euler method—A stable coupling scheme for Monte Carlo burnup calculations[J]. Annals of Nuclear Energy, 2013, 60 : 295-300. doi: 10.1016/j.anucene.2013.05.015
|
| [7] |
Griesheimer D P. In-line xenon convergence algorithm for Monte Carlo reactor calculations[C]//PHYSOR2010. 2010: 660-679.
|