Volume 30 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
Li Yaodong, Yu Ganglin, Li Wanlin, et al. Xenon oscillation analysis in Monte Carlo burnup calculation[J]. High Power Laser and Particle Beams, 2018, 30: 036004. doi: 10.11884/HPLPB201830.170228
Citation: Li Yaodong, Yu Ganglin, Li Wanlin, et al. Xenon oscillation analysis in Monte Carlo burnup calculation[J]. High Power Laser and Particle Beams, 2018, 30: 036004. doi: 10.11884/HPLPB201830.170228

Xenon oscillation analysis in Monte Carlo burnup calculation

doi: 10.11884/HPLPB201830.170228
  • Received Date: 2017-06-21
  • Rev Recd Date: 2017-10-10
  • Publish Date: 2018-03-15
  • Burnup calculation is one of the core contents in physical analysis of nuclear reactors. In Monte Carlo burnup calculation, power oscillation might occur periodically in certain geometrical dimension and certain step length, namely xenon oscillation. Xenon oscillations might result in a serious deviation from the actual situation. The fundamental reason for the xenon oscillation is that the neutron flux and xenon concentration in the regions of burn-up do not match. According to the mechanism of xenon oscillation, we classify xenon oscillations as physical xenon oscillations produced in short step conditions and numerical xenon oscillations produced in long time step conditions. Balanced xenon oscillation suppression method is forced to balance neutron flux with xenon concentration. In the RMC transport the article uses module a balanced xenon method for the calculation of iodine and xenon. In the RMC transport module, the equilibrium xenon method was used to continuously update the concentration of iodine and xenon. In the case of convergence, the occurrence of xenon oscillation is suppressed.
  • loading
  • [1]
    佘顶. 基于自主堆用蒙卡程序RMC的燃耗与源收敛问题研究[D]. 北京: 清华大学, 2013.

    She Ding. Study on the burn-up and source convergence of RMC based on Monarch program. Beijing: Tsinghua University, 2013
    [2]
    余纲林, 王侃, 王煜宏. MCBurn—MCNP和ORIGEN耦合程序系统[J]. 原子能科学技术, 2003, 37 (3): 250-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200303013.htm

    Yu Ganglin, Wang Kan, Wang Yuhong. MCBurn—MCNP and ORIGEN coupling program system. Atomic Energy Science and Technology, 2003, 37 (3): 250-254 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200303013.htm
    [3]
    Isotalo A, Leppänen J, Dufek J. Preventing xenon oscillations in Monte Carlo burnup calculations by enforcing equilibrium xenon distribution[J]. Annals of Nuclear Energy, 2013, 60 : 78-85. doi: 10.1016/j.anucene.2013.04.031
    [4]
    张法邦, 吴清泉. 核反应堆运行物理[M]. 北京: 原子能出版社, 2000.

    Zhang Fabang, Wu Qingquan. Nuclear physics in reactor operation. Beijing: Atomic Energy Press, 2000
    [5]
    Dufek J, Kotlyar D, Shwageraus E, et al. Numerical stability of the predictor-corrector method in Monte Carlo burnup calculations of critical reactors[J]. Annals of Nuclear Energy, 2013, 56 : 34-38. doi: 10.1016/j.anucene.2013.01.018
    [6]
    Dufek J, Kotlyar D, Shwageraus E. The stochastic implicit Euler method—A stable coupling scheme for Monte Carlo burnup calculations[J]. Annals of Nuclear Energy, 2013, 60 : 295-300. doi: 10.1016/j.anucene.2013.05.015
    [7]
    Griesheimer D P. In-line xenon convergence algorithm for Monte Carlo reactor calculations[C]//PHYSOR2010. 2010: 660-679.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (1970) PDF downloads(266) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return