Volume 30 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
Tan Jie, Zhang Peng. Comparison and analysis of two algorithms for solving large depletion chains[J]. High Power Laser and Particle Beams, 2018, 30: 036002. doi: 10.11884/HPLPB201830.170293
Citation: Tan Jie, Zhang Peng. Comparison and analysis of two algorithms for solving large depletion chains[J]. High Power Laser and Particle Beams, 2018, 30: 036002. doi: 10.11884/HPLPB201830.170293

Comparison and analysis of two algorithms for solving large depletion chains

doi: 10.11884/HPLPB201830.170293
  • Received Date: 2017-07-14
  • Rev Recd Date: 2017-11-27
  • Publish Date: 2018-03-15
  • In order to trace strictly the changes of nuclide density with burnup in a fission reactor, the independently developed codes by Chebyshev Rational Approximate Method (CRAM) and widely applied ORIGEN2 were adopted to solve large depletion chains to solve depletion equations based on Burnup Matrix Methods. The values are compared and analyzed with the aspects of computational accuracy, efficiency and step stability. The results show that CRAM can provide similar density solutions of important nuclides with a little slower speed and a much better step stability than those of ORIGEN2.
  • loading
  • [1]
    龚建华. 深度优先搜索算法及其改进[J]. 现代电子技术, 2007, 30 (22): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ200722034.htm

    Gong Jianhua. Depth priority algorithm and its improvement. Modern Electronics Technique, 2007, 30 (22): 90-92 https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ200722034.htm
    [2]
    吴明宇, 王事喜, 杨勇, 等. 基于线性核素链的燃耗算法与蒙特卡罗程序耦合计算[J]. 强激光与粒子束, 2013, 25 (1): 248-252. doi: 10.3788/HPLPB20132501.0248

    Wu Mingyu, Wang Shixi, Yang Yong, et al. Monte Carlo program coupling with depletion code based on linear nuclide chain. High Power Laser and Particle Beams, 2013, 25 (1): 248-252 doi: 10.3788/HPLPB20132501.0248
    [3]
    李昊, 杨烽, 余纲林, 等. 基于线性子链法的压水堆裂变产物源项一体化计算方法[J]. 强激光与粒子束, 2017, 29: 026002. doi: 10.11884/HPLPB201729.160245

    Li Hao, Yang Feng, Yu Ganglin, et al. Integrated calculation method for pressurized water reactor design basis source terms based on linear chain method. High Power Laser and Particle Beams, 2017, 29: 026002 doi: 10.11884/HPLPB201729.160245
    [4]
    Cetenar J. General solution of Bateman equations for nuclear transmutations[J]. Annuals of Nuclear Energy, 2006, 33 (7): 640-645.
    [5]
    Pusa M. Rational approximations to the matrix exponential in burnup calculations[J]. Nuclear Science & Engineering the Journal of the American Nuclear Society, 2011, 169 (2): 155-167.
    [6]
    Cody W J, Meinardus G, Varga R S. Chebyshev rational approximations to e-x in[0, +∞) and applications to heat-conduction problems[J]. Journal of Approximation Theory, 1969, 2 (1): 50-65.
    [7]
    Pusa M, Leppänen J. Computing the matrix exponential in burnup calculations[J]. Nuclear Science & Engineering: the Journal of the American Nuclear Society, 2010, 164 (23): 140-150.
    [8]
    Pusa M. Correction to partial fraction decomposition coefficients for Chebyshev rational approximation on the negative real axis[J/OL]. ArXiv: 1206.2880[math. NA], 2012.
    [9]
    Gonchar A A, Rakhmanov E A. Equilibrium distributions and rate of rational approximation of analytic functions[J]. Mathematics of the USSR-Sbornik, 1989, 62 (2): 306-352.
    [10]
    Dehart M D. OECD/NEA burnup credit calculational criticality benchmark phaseI-B results[R]. ORNL-6901, 1996.
    [11]
    James R B, and Donald J R. Sparse matrix computations[M]. New York: Academic Press, 1976: 3-22.
    [12]
    Pusa M, Leppänen J. Solving linear systems with sparse Gaussian elimination in the Chebyshev Rational Approximation Method[J]. Nuclear Science and Engineering, 2013, 175 (3): 250-258.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1154) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return