Volume 30 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
Sun Fengju, Jiang Xiaofeng, Wang Zhiguo, et al. Design and simulation of fast linear transformer driver with four stages in series sharing common cavity shell and mega-ampere current[J]. High Power Laser and Particle Beams, 2018, 30: 035001. doi: 10.11884/HPLPB201830.170351
Citation: Sun Fengju, Jiang Xiaofeng, Wang Zhiguo, et al. Design and simulation of fast linear transformer driver with four stages in series sharing common cavity shell and mega-ampere current[J]. High Power Laser and Particle Beams, 2018, 30: 035001. doi: 10.11884/HPLPB201830.170351

Design and simulation of fast linear transformer driver with four stages in series sharing common cavity shell and mega-ampere current

doi: 10.11884/HPLPB201830.170351
  • Received Date: 2017-09-04
  • Rev Recd Date: 2017-11-09
  • Publish Date: 2018-03-15
  • Fast Linear Transformer Drivers (FLTDs) can directly produce high-power pulse with the rise time 70-200 ns, which are based on magnetic coupling by many bricks connected in parallel in a circular annulus to output MA current and tens of cavities connected in series to output MV voltage. FLTDs are regarded as the next petawatt drivers for Z-pinch by international scientific community. At present, mega-ampere scale FLTD cavities need two or four triggering pulses with 100 kV and rise time of 25 ns in general, so the petawatt FLTD drivers consist of several thousand cavities require ten thousands of the triggering pulses and should be arrived the different position cavities at accurate sequences in order to realize the secondary pulses to superpose inductively and efficiently, which is the bottleneck of the FLTD development. The paper presents a creative FLTD module with four stages in series sharing induction cavity shell and a novel trigger method achieving nearly ideal IVA triggering sequence for each FLTD module. The FLTD module with mega-ampere current output consisting of 16-cavities in series is designed. The circuit model of the new structure of 16-stage FLTD is developed. The influences of the switches' prefire of main bricks, the triggering brick switches' closing sequences and jitter, and the secondary transmission line impedances are simulated based on the circuit model.
  • loading
  • [1]
    梁天学, 姜晓峰, 孙凤举, 等. 300 kA直线型变压器驱动源模块实验研究[J]. 强激光与粒子束, 2012, 24 (3): 655-658. doi: 10.3788/HPLPB20122403.0655

    Liang Tianxue, Jiang Xiaofeng, Sun Fengju, et al. Experimental investigation of 300 kA fast linear transformer driver stage. High Power Laser and Particle Beams, 2012, 24 (3): 655-658 doi: 10.3788/HPLPB20122403.0655
    [2]
    陈林, 王勐, 邹文康, 等. 中物院快脉冲直线型变压器驱动源技术研究进展[J]. 高电压技术, 2015, 41 (6): 1798-1806. doi: 10.13336/j.1003-6520.hve.2015.06.005

    Chen Lin, Wang Meng, Zou Wenkang, et al. Recent advances in fast linear transformer driver in CAEP. High Voltage Engineering, 2015, 41 (6): 1798-1806 doi: 10.13336/j.1003-6520.hve.2015.06.005
    [3]
    Kim A A, Mazarakis M G, Sinebryukhov V A, et al. Development and tests of fast 1-MA linear transformer driver stages[J]. Physical Review Special Topics—Accelerators and Beams, 2009, 12: 050402.
    [4]
    Kovalchuk B M, Kharlov A V, Kumpyyak E V, et al. Pulsed generator based on air-insulated linear-transformer-driver stages[J]. Physical Review Special Topics—Accelerators and Beams, 2013, 16: 030401.
    [5]
    Woodworth J R, Fowler W E, Stoltzfus B S, et al. Compact 810 kA linear transformer driver cavity[J]. Physical Review Special Topics-Accelerators and Beams, 2011, 14: 040401. doi: 10.1103/PhysRevSTAB.14.040401
    [6]
    Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Physical Review Special Topics—Accelerators and Beams, 2015, 18: 110401.
    [7]
    Zhou Lin, Li Zhenghong, Wang Zhen, et al. Design of 5-MA 100-ns linear-transformer-driver accelerator for wire array Z pinch experiments[J]. Physical Review Special Topics-Accelerators and Beams, 2016, 19: 030401. doi: 10.1103/PhysRevAccelBeams.19.030401
    [8]
    Olson C L, Mazarakis M G, Fowler W E, et al. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield[R]. SAND2007-0059, 2007.
    [9]
    邓建军, 王勐, 谢卫平, 等. 面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J]. 强激光与粒子束, 2014, 26: 100201. doi: 10.11884/HPLPB201426.100201

    Deng Jianjun, Wang Meng, Xie Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor. High Power Laser and Particle Beams, 2014, 26: 100201 doi: 10.11884/HPLPB201426.100201
    [10]
    Stygar W A, Cuneo M E, Headley D I, et al. Architecture of petawatt-class Z-pinch accelerators[J]. Physical Review Special Topics—Accelerators and Beams, 2007, 10: 030401.
    [11]
    Michael G Mazarakis, William E Fowler, LeChien K L, et al. High-current linear transformer driver development at Sandia National Laboratories[J]. IEEE Trans Plasma Science, 2010, 38 (4): 704-713.
    [12]
    Leckbee J, Cordova S, Oliver B, et al. Linear transformer driver (LTD) research for radiographic applications[C]//18th IEEE International Pulsed Power Conference. 2011: 614-618.
    [13]
    Toury M, Vermare C, Etchessahar B, et al. An 8 MV flash X-rays machine using a LTD design[C]//16th IEEE International Pulsed Power Conference. 2007: 599-602.
    [14]
    Toury M, Cartier F, Combes P, et al. Transfer and test of a 1 MV LTD generator at CEA[C]//19th IEEE International Pulsed Power Conference. 2013: 766-769.
    [15]
    Bayol F, Calvignac J, Delpanque R, et al. Development and test of a 800 kV, 35 kA air insulated LTD pulser for radiography application[C]//20th IEEE International Pulsed Power Conference. 2015: 601-606.
    [16]
    孙凤举, 邱爱慈, 魏浩, 等. 闪光照相快放电直线型变压器脉冲源新进展[J]. 现代应用物理, 2015, 6 (4): 233-243. https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201504001.htm

    Sun Fengju, Qiu Aici, Wei Hao, et al. Development of fast linear transformer drivers for radiography. Modern Applied Physics, 2015, 6 (4): 233-243 https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201504001.htm
    [17]
    孙凤举, 邱爱慈, 魏浩, 等. 快Z箍缩百太瓦级脉冲驱动源概念设计的发展[J]. 现代应用物理, 2017, 8: 020702. https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201702002.htm

    Sun Fengju, Qiu Aici, Wei Hao, et al. Development of conceptual designs on fast Z-pinch pulsed power driver with hundreds of terawatt. Modern Applied Physics, 2017, 8: 020702 https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201702002.htm
    [18]
    Sinars D B, Daniel Scott, Scott K C N, et al. Pulsed power science and technology: a strategic outlook for the National Nuclear Security Administration[R]. LA-UR-16027957, 2016.
    [19]
    Stygar W A, Flower M E, LeChien K R, et al. Shaping of output pulse of a linear transformer driver module[J]. Physical Review Special Topics—Accelerators and Beams, 2009, 12: 030402.
    [20]
    Liu Peng, Sun Fengju, Yin Jiahui, et al. Effect of cavity-triggering sequences on output parameters of LTD-based drivers[J]. IEEE Trans Plasma Science, 2011, 39 (5): 1247-1953.
    [21]
    Liu Peng, Sun Fengju, Yin Jiahui, et al. Influences of the switching jitter on the operating performances of linear transformer drivers[J]. Plasma Science and Technology, 2012, 39 : 725-729.
    [22]
    Yin Jiahui, Liu Peng, Wei Hao, et al. Trigger method based on secondary induced overvoltage for linear transformer drivers[J]. IEEE Trans Plasma Science, 2013, 41 (7): 1760-1766.
    [23]
    孙凤举, 曾江涛, 梁天学, 等. 基于感应腔触发支路和角向线的LTD新型触发技术[J]. 现代应用物理, 2016, 7: 010401. https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201601003.htm

    Sun Fengju, Zeng Jiangtao, Liang Tianxue, et al. A novel triggering technique based on an internal brick and azimuthal line in cavities for linear transformer. Modern Applied Physics, 2016, 7: 010401 https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201601003.htm
    [24]
    孙凤举, 姜晓峰, 魏浩, 等. 一种多级串联共用外腔体新结构LTD[J]. 强激光与粒子束, 2017, 29: 025001. doi: 10.11884/HPLPB201729.160507

    Sun Fengju, Jiang Xiaofeng, Wei Hao, et al. Novel configuration linear transformer driver with multistage in series sharing common cavity shell. High Power Laser and Particle Beams, 2017, 29: 025001 doi: 10.11884/HPLPB201729.160507
    [25]
    Sun Fengju, Zeng Jiangtao, Liang Tianxue, et al. Trigger method based on internal bricks within cavities methods for linear transformer drivers[C]//20th IEEE International Pulsed Power Conference. 2015.
    [26]
    Kim A A, Mazarakis M G, Sinebryukhov V A, et al. Lifetime of the HCEI spark gap switch for linear transformer driver[C]//20th IEEE International Pulsed Power Conference. 2015: 196-199.
    [27]
    Gruner F R, Crest Cedar, Stygar W A, et al. High-voltage, low inductance gas switch: US9294085[P]. 2016-03-22.
    [28]
    Woodworth J R, Stygar W A, Bennett L F, et al. New low inductance gas switches for linear transformer driver[J]. Physical Review Special Topics—Accelerators and Beams, 2010, 13: 080401.
    [29]
    Reisman D B, Stoltzfus B S, Stygar W A, et al. Pulsed power accelerator for material physics experiments[J]. Physical Review Special Topics—Accelerators and Beams, 2015, 18: 090401.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (1651) PDF downloads(201) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return