Volume 30 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
Shao Zhuqiang, Hu Zengrong, Guo Shaoxiong, et al. Numerical simulation of temperature field distribution for laser sintering graphene reinforced copper composites[J]. High Power Laser and Particle Beams, 2018, 30: 039001. doi: 10.11884/HPLPB201830.170366
Citation: Shao Zhuqiang, Hu Zengrong, Guo Shaoxiong, et al. Numerical simulation of temperature field distribution for laser sintering graphene reinforced copper composites[J]. High Power Laser and Particle Beams, 2018, 30: 039001. doi: 10.11884/HPLPB201830.170366

Numerical simulation of temperature field distribution for laser sintering graphene reinforced copper composites

doi: 10.11884/HPLPB201830.170366
  • Received Date: 2017-09-09
  • Rev Recd Date: 2017-12-03
  • Publish Date: 2018-03-15
  • Transient temperature field distribution is important for laser sintering graphene reinforced copper matrix composites. It is still difficult to measure the temperature field directly today. Numerical simulation was normally utilized to study the distribution of temperature field. Finite element models were employed to simulate the laser sintering of graphene and copper mixture coatings on 42CrMo base plate. The temperature distribution, the geometrical parameters of the melting pool, the width of metallurgical bonding were investigated. In order to verify simulation results, single-track experiments were performed with the same laser sintering parameters as used in simulation. It was proved that convection and radiation heat transfer, and the latent heat of phase transition play the major roles in the laser sintering process. Simulation results are consistent with experiment results under the same processing parameters. Based on simulation results, the temperature field distribution and the geometrical parameters of the melting pool can be predicted. Thus, according to these guidelines, the optimal laser sintering parameters can be decided.
  • loading
  • [1]
    Lin D, Liu R C, Cheng G J. Laser sintering of separated and uniformly distributed multiwall carbon nanotubes integrated iron nanocomposites[J]. Journal of Applied Physics, 2014, 115 : 113513. doi: 10.1063/1.4869214
    [2]
    Lin D, Saei M, Suslov S, et al. Super-strengthening and stabilizing with carbon nanotube harnessed high density nanotwins in metals by shock loading[J]. Sci Rep, 2015, 5: 15405. doi: 10.1038/srep15405
    [3]
    Kruth J P. Material incress manufacturing by rapid prototyping techniques[J]. CIRP Annals-Manufacturing Technology, 1991, 40 (2): 603-614. doi: 10.1016/S0007-8506(07)61136-6
    [4]
    任继文, 彭蓓. 选择性激光烧结技术的研究现状与展望[J]. 机械设计与制造, 2009(10): 266-268. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ200910107.htm

    Ren Jiwen, Peng Bei. Reviews and prospects for selective laser sintering(SLS). Machinery Design & Manufacture, 2009(10): 266-268 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ200910107.htm
    [5]
    Díaz E, Amado J M, Montero J, et al. Comparative study of Co-based alloys in repairing low Cr-Mo steel components by laser cladding[J]. Physics Procedia, 2012, 39 (39): 368-375.
    [6]
    Cervera G B M, Lombera G. Numerical prediction of temperature and density distributions in selective laser sintering processes[J]. Rapid Prototyping Journal, 1999, 5 (1): 12-26. doi: 10.1108/13552549910251837
    [7]
    Carter J L, Krumhansl J A. Band structure of graphite[J]. The Journal of Chemical Physics, 1953, 21 (12): 2238-2239. doi: 10.1063/1.1698840
    [8]
    Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3): 902-907. doi: 10.1021/nl0731872
    [9]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666-669. doi: 10.1126/science.1102896
    [10]
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887): 385-388. doi: 10.1126/science.1157996
    [11]
    Lee C, Wei X, Li Q, et al. Elastic and frictional properties of graphene[J]. Physica Status Solidi (B), 2009, 246 (11/12): 2562-2567.
    [12]
    胡增荣, 童国权, 张超, 等. 激光烧结石墨烯-铜纳米复合材料性能研究[J]. 强激光与粒子束, 2015, 27: 099001. doi: 10.11884/HPLPB201527.099001

    Hu Zengrong, Tong Guoquan, Zhang Chao, et al. Corrosion resistance and hardness of laser sintered graphene-copper nanocomposites. High Power Laser and Particle Beams, 2015, 27: 099001 doi: 10.11884/HPLPB201527.099001
    [13]
    Lin D, Suslov S, Ye C, et al. Laser assisted embedding of nanoparticles into metallic materials[J]. Applied Surface Science, 2012, 258 (7): 2289-2296. doi: 10.1016/j.apsusc.2011.09.132
    [14]
    Sharma P, Dubey A K, Pandey A K. Numerical study of temperature and stress fields in laser cutting of aluminium alloy sheet[J]. Procedia Materials Science, 2014, 5 : 1887-1896. doi: 10.1016/j.mspro.2014.07.510
    [15]
    Sharma P, Dubey A K, Pandey A K. Numerical study of temperature and stress fields in laser cutting of aluminium alloy sheet[J]. Procedia Materials Science, 2014, 5 : 1887-1896. doi: 10.1016/j.mspro.2014.07.510
    [16]
    沈以赴, 顾冬冬, 余承业, 等. 直接金属粉末激光烧结成形过程温度场模拟[J]. 中国机械工程, 2005, 16 (1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200501017.htm

    Shen Yifu, Gu Dongdong, Yu Chengye, et al. Simulation of temperature field in direct metal laser sintering processes. China Mechanical Engineering, 2005, 16 (1): 67-73 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200501017.htm
    [17]
    Zakharchenko K V, Fasolino A, Los J H, et al. Melting of graphene: from two to one dimension[J]. Journal of Physics: Condensed Matter, 2011, 23 : 202202. doi: 10.1088/0953-8984/23/20/202202
    [18]
    Pop E, Varshney V, Roy A K. Thermal properties of graphene: Fundamentals and applications[J]. MRS Bulletin, 2012, 37 (12): 1273-1281. doi: 10.1557/mrs.2012.203
    [19]
    Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transactions B, 2011, 43 (2): 316-324.
    [20]
    Roberts I A, Wang C J, Esterlein R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. International Journal of Machine Tools and Manufacture, 2009, 49 (12/13): 916-923.
    [21]
    Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37 (3): 269-277. doi: 10.1016/j.commatsci.2005.07.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (1767) PDF downloads(224) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return