| Citation: | Shao Zhuqiang, Hu Zengrong, Guo Shaoxiong, et al. Numerical simulation of temperature field distribution for laser sintering graphene reinforced copper composites[J]. High Power Laser and Particle Beams, 2018, 30: 039001. doi: 10.11884/HPLPB201830.170366 |
| [1] |
Lin D, Liu R C, Cheng G J. Laser sintering of separated and uniformly distributed multiwall carbon nanotubes integrated iron nanocomposites[J]. Journal of Applied Physics, 2014, 115 : 113513. doi: 10.1063/1.4869214
|
| [2] |
Lin D, Saei M, Suslov S, et al. Super-strengthening and stabilizing with carbon nanotube harnessed high density nanotwins in metals by shock loading[J]. Sci Rep, 2015, 5: 15405. doi: 10.1038/srep15405
|
| [3] |
Kruth J P. Material incress manufacturing by rapid prototyping techniques[J]. CIRP Annals-Manufacturing Technology, 1991, 40 (2): 603-614. doi: 10.1016/S0007-8506(07)61136-6
|
| [4] |
任继文, 彭蓓. 选择性激光烧结技术的研究现状与展望[J]. 机械设计与制造, 2009(10): 266-268. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ200910107.htm
Ren Jiwen, Peng Bei. Reviews and prospects for selective laser sintering(SLS). Machinery Design & Manufacture, 2009(10): 266-268 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ200910107.htm
|
| [5] |
Díaz E, Amado J M, Montero J, et al. Comparative study of Co-based alloys in repairing low Cr-Mo steel components by laser cladding[J]. Physics Procedia, 2012, 39 (39): 368-375.
|
| [6] |
Cervera G B M, Lombera G. Numerical prediction of temperature and density distributions in selective laser sintering processes[J]. Rapid Prototyping Journal, 1999, 5 (1): 12-26. doi: 10.1108/13552549910251837
|
| [7] |
Carter J L, Krumhansl J A. Band structure of graphite[J]. The Journal of Chemical Physics, 1953, 21 (12): 2238-2239. doi: 10.1063/1.1698840
|
| [8] |
Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3): 902-907. doi: 10.1021/nl0731872
|
| [9] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666-669. doi: 10.1126/science.1102896
|
| [10] |
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887): 385-388. doi: 10.1126/science.1157996
|
| [11] |
Lee C, Wei X, Li Q, et al. Elastic and frictional properties of graphene[J]. Physica Status Solidi (B), 2009, 246 (11/12): 2562-2567.
|
| [12] |
胡增荣, 童国权, 张超, 等. 激光烧结石墨烯-铜纳米复合材料性能研究[J]. 强激光与粒子束, 2015, 27: 099001. doi: 10.11884/HPLPB201527.099001
Hu Zengrong, Tong Guoquan, Zhang Chao, et al. Corrosion resistance and hardness of laser sintered graphene-copper nanocomposites. High Power Laser and Particle Beams, 2015, 27: 099001 doi: 10.11884/HPLPB201527.099001
|
| [13] |
Lin D, Suslov S, Ye C, et al. Laser assisted embedding of nanoparticles into metallic materials[J]. Applied Surface Science, 2012, 258 (7): 2289-2296. doi: 10.1016/j.apsusc.2011.09.132
|
| [14] |
Sharma P, Dubey A K, Pandey A K. Numerical study of temperature and stress fields in laser cutting of aluminium alloy sheet[J]. Procedia Materials Science, 2014, 5 : 1887-1896. doi: 10.1016/j.mspro.2014.07.510
|
| [15] |
Sharma P, Dubey A K, Pandey A K. Numerical study of temperature and stress fields in laser cutting of aluminium alloy sheet[J]. Procedia Materials Science, 2014, 5 : 1887-1896. doi: 10.1016/j.mspro.2014.07.510
|
| [16] |
沈以赴, 顾冬冬, 余承业, 等. 直接金属粉末激光烧结成形过程温度场模拟[J]. 中国机械工程, 2005, 16 (1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200501017.htm
Shen Yifu, Gu Dongdong, Yu Chengye, et al. Simulation of temperature field in direct metal laser sintering processes. China Mechanical Engineering, 2005, 16 (1): 67-73 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200501017.htm
|
| [17] |
Zakharchenko K V, Fasolino A, Los J H, et al. Melting of graphene: from two to one dimension[J]. Journal of Physics: Condensed Matter, 2011, 23 : 202202. doi: 10.1088/0953-8984/23/20/202202
|
| [18] |
Pop E, Varshney V, Roy A K. Thermal properties of graphene: Fundamentals and applications[J]. MRS Bulletin, 2012, 37 (12): 1273-1281. doi: 10.1557/mrs.2012.203
|
| [19] |
Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transactions B, 2011, 43 (2): 316-324.
|
| [20] |
Roberts I A, Wang C J, Esterlein R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. International Journal of Machine Tools and Manufacture, 2009, 49 (12/13): 916-923.
|
| [21] |
Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37 (3): 269-277. doi: 10.1016/j.commatsci.2005.07.007
|