Volume 30 Issue 5
May  2018
Turn off MathJax
Article Contents
Fang Dongfan, Qin Weidong, Sun Qizhi, et al. Influence of crowbar switch on the current of the'Yingguang -1' device[J]. High Power Laser and Particle Beams, 2018, 30: 055001. doi: 10.11884/HPLPB201830.170385
Citation: Fang Dongfan, Qin Weidong, Sun Qizhi, et al. Influence of crowbar switch on the current of the"Yingguang -1" device[J]. High Power Laser and Particle Beams, 2018, 30: 055001. doi: 10.11884/HPLPB201830.170385

Influence of crowbar switch on the current of the"Yingguang -1" device

doi: 10.11884/HPLPB201830.170385
  • Received Date: 2017-09-26
  • Rev Recd Date: 2017-12-01
  • Publish Date: 2018-05-15
  • "Yingguang-1" is a multi-bank program-discharged pulsed power device to investigate the formation, confinement and instability of the high temperature and high density field reversed configuration (FRC) plasma injector for the magnetized target fusion (MTF), which was constructed at the Institute of Fluid Physics (IFP) in 2014. This paper discusses the influence of the crowbar switch on the load current in "Yingguang-1" device by function modeling the crowbar switch with the software Pspice and conducting the preliminary test experiment. The function circuit modeling of the crowbar switch employed in the program-discharged power system, is accurately presented for the first time. The simulation and experiment results show that the crowbar switch can improve the load current's duration effectively and both its closed resistance and inductances can affect the load current's amplitude and duration obviously. As the closing resistance decreases, the current's duration becomes broader, however, the current's amplitude remains the same. As the coupling inductance connecting to the theta pinch main power system decreases, the duration becomes broader. The approximate 4 mΩ closing resistance and 60 nH with 125 nH coupling inductances in the actual crowbar switch have been determined by the simulation based on the measured current. The test results prove that the function modeling of the crowbar switch is correct and it broadens the current duration effectively.
  • loading
  • [1]
    Gotchev O V, Knauer J P, Chang P Y, et al. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas[J]. Review of Scientific Instruments, 2009, 80: 043504. doi: 10.1063/1.3115983
    [2]
    Lynn A G, Merritt E, Gilmore M, et al. Diagnostics for the plasma liner experiment[J]. Review of Scientific Instruments, 2010, 81: 10E115. doi: 10.1063/1.3478116
    [3]
    Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [4]
    Stephen A S, Roger A V. High-gain magnetized inertial fusion[J]. Physical Review Letters, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [5]
    Taccetti J M, Intrator T P, Wurden G A, et al. FRX-L: A field-reversed configuration plasma injector for magnetized target fusion[J]. Review of Scientific Instruments, 2003, 74(10): 4314-4323. doi: 10.1063/1.1606534
    [6]
    Degnan J H, Amdahl D J, Brown A, et al. Experimental and computational progress on liner implosion for compression of FRCs[J]. IEEE Transactions on Plasma Science, 2008, 36(1): 80-91. doi: 10.1109/TPS.2007.913814
    [7]
    Finn J M, Sudan R N. Field-reversed configurations with a component of energetic particles[J]. Nuclear Fusion, 1982, 22(11): 1443-1518. http://www.onacademic.com/detail/journal_1000035869425310_9e68.html
    [8]
    Armstrong W T, Linford R K, Lipson J, et al. Field-reversed experiments(FRX) on compact toroids[J]. Physics of Fluids, 1981, 24(11): 2068-2089. doi: 10.1063/1.863303
    [9]
    Siemon R E, Armstrong W T, Bartsch R R. Plasma physics and controlled nuclear fusion research[C]//Proceedings of an International Conference. 1982, 2: 283.
    [10]
    Intrator T, Zhang S Y, Degnan J H, et al. A high density field reversed configuration(FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC[J]. Physics of Plasmas, 2004, 11(5): 2580-2585. doi: 10.1063/1.1689666
    [11]
    Kumashiro S, Takahashi T, Ooi M, et al. Review of field-reversed configurations: Physics[J]. J Phys Soc Jpn, 1993, 62: 1539. doi: 10.1143/JPSJ.62.1539
    [12]
    Harris W S, Trask E, Roche T, et al. Ion flow measurements and plasma current analysis in the Irvine Field Reversed Configuration[J]. Physics of Plasmas, 2009, 16: 112509.
    [13]
    Ono Y, Morita A, Katsurai M, et al. Experimental investigation of three-dimensional magnetic reconnection by use of two colliding spheromaks[J]. Physics of Fluids B Plasma Physics, 1993, 5(10): 3691-3701. http://www.researchgate.net/profile/Masaaki_Yamada2/publication/253674661_Experimental_investigation_of_three-dimensional_magnetic_reconnection_by_use_of_colliding_spheromaks/links/54f0860b0cf24eb87940c455.pdf
    [14]
    Kawamori E, Ono Y. Effect of ion skin depth on relaxation of merging spheromaks to a field-reversed configuration[J]. Physical Review Letters, 2005, 95: 085003. doi: 10.1103/PhysRevLett.95.085003
    [15]
    Yamada M, Ji H, Hsu S, et al. Study of driven magnetic reconnection in a laboratory plasma[J]. Physics of Plasmas, 1997, 4(5): 1936-1944. doi: 10.1063/1.872336
    [16]
    Binderbauer M W, Guo H Y, Tuszewski M, et al. Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high-β compact toroids[J]. Physical Review Letters, 2010, 105: 045003. doi: 10.1103/PhysRevLett.105.045003
    [17]
    Hoffman A L, Guo H Y, Slough J T, et al. The TCS rotating magnetic field FRC current-drive experiment[J]. Fusion Science and Technology, 2002, 41(2): 92-106. doi: 10.13182/FST02-A205
    [18]
    Guo H Y, Hoffman A L, Milroy R D. Rotating magnetic field current drive of high-temperature field reversed configurations with high ζ scaling[J]. Physics of Plasmas, 2007, 14: 112502.
    [19]
    Munsat T, Ellison C L, Light A, et al. The Colorado FRC Experiment[J]. Journal of Fusion Energy, 2008, 27(1/2): 82-86.
    [20]
    孙奇志, 方东凡, 刘伟, 等. "荧光-1"实验装置物理设计[J]. 物理学报, 2013, 62: 078407. doi: 10.7498/aps.62.078407

    Sun Qizhi, Fang Dongfan, Liu Wei, et al. Physical design of the "Ying-Guang 1" device. Acta Physica Sinica, 2013, 62: 078407 doi: 10.7498/aps.62.078407
    [21]
    Grabowski C, Degnan J H, Cavazos T, et al. Development of a high-current low-inductance crowbar switch for FRX-L[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1905-1915. doi: 10.1109/TPS.2002.805405
    [22]
    Intrator T P, Park J Y, Degnan J H, et al. A high-density field reversed configuration plasma for magnetized target fusion[J]. IEEE Transactions on Plasma Science, 2004, 32(1): 152-160.
    [23]
    Wurden G A, Intrator T P. Compressional heating of a compact toroid plasma to fusion conditions[R]. DOE F4650.2, 200: 1-75.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (1027) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return