Volume 30 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
Jiao Chuanhai, Li Yongcheng. Wideband compressed spectrum sensing based on modified sparsity adaptive matching pursuit algorithm[J]. High Power Laser and Particle Beams, 2018, 30: 033203. doi: 10.11884/HPLPB201830.170395
Citation: Jiao Chuanhai, Li Yongcheng. Wideband compressed spectrum sensing based on modified sparsity adaptive matching pursuit algorithm[J]. High Power Laser and Particle Beams, 2018, 30: 033203. doi: 10.11884/HPLPB201830.170395

Wideband compressed spectrum sensing based on modified sparsity adaptive matching pursuit algorithm

doi: 10.11884/HPLPB201830.170395
Funds:

State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System Open Foundation CEMEE2015Z0203B

Natural Science Foundation of Anhui Province 1608085QF143

More Information
  • Author Bio:

    Jiao Chuanhai(1983—), male, PhD, engaged in wireless signal processing and cognitive radio research; jiao_chuanhai@126.com

  • Received Date: 2017-10-10
  • Rev Recd Date: 2017-11-13
  • Publish Date: 2018-03-15
  • Traditional spectrum sensing based on compressed sensing assumes that the sparsity is known, while actually, it is unknown. To solve the problem, we proposed a modified sparsity adaptive matching pursuit (MSAMP) algorithm. The MSAMP algorithm pre-estimates the value of sparsity in the process of choosing the support set. A cooperative wideband spectrum compressed sensing method is developed based on the MSAMP algorithm and sequential compression inspection technique. Theoretical analysis and simulation results show that the method can enhance the spectrum sensing capability without a priori knowledge of sparsity.
  • loading
  • [1]
    Haykin S, Thomson J, Reed H. Spectrum sensing for cognitive radio[J]. Proceedings of the IEEE, 2009, 97 (5): 849-877. doi: 10.1109/JPROC.2009.2015711
    [2]
    Jiao Licheng, Yang Shuyuan, Liu Fang, et al. Development and prospect of compressive sensing[J]. Acta Electronica Sinica, 2011, 39 (7): 1651-1662.
    [3]
    Tian Z, Giannakis G B. Compressed sensing for wideband cognitive radios[C]//Proc of IEEE International Conference on Acoustics, Speech and Signal. 2007: 1357-1360.
    [4]
    Yen C P, Tsai Y, Wang Xiaodong. Wideband spectrum sensing based on sub-Nyquist sampling[J]. IEEE Trans Signal Processing, 2013, 61 (12): 3028-3040. doi: 10.1109/TSP.2013.2251342
    [5]
    Pan Lebing, Xiao Shiliang, Yuan Xiaobing. Wideband power spectrum sensing for cognitive radios based on sub-Nyquist sampling[J]. Wireless Personal Communications, 2015, 84 (2): 919-933. doi: 10.1007/s11277-015-2668-8
    [6]
    Akyildz I F, Lo B F, Balakrishnan R. Cooperative spectrum sensing in cognitive radio networks: A survey[J]. Physical Communication, 2011, 4 (1): 40-62. doi: 10.1016/j.phycom.2010.12.003
    [7]
    Arroyo-Valles R, Maleki S, Leus G. Distributed wideband spectrum sensing for cognitive radio networks[C]//Proc of IEEE International Conference on Acoustics, Speech and Signal. 2014: 7263-7267.
    [8]
    Do TT, Lu G, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]//42nd Asilomar Conference on Signals, Systems and Computers. 2008: 581-587.
    [9]
    NeedellD, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26 (3): 301-321. doi: 10.1016/j.acha.2008.07.002
    [10]
    Wang Yue, Tian Zhi, Feng Chunyan. Sparsity order estimation and its application in compressive spectrum sensing for cognitive radios[J]. IEEE Trans Wireless Communications, 2012, 11 (6): 2116-2125. doi: 10.1109/TWC.2012.050112.110505
    [11]
    Wu Honglin, Wang Shu. Adaptive sparsity matching pursuit algorithm for sparsity reconstruction[J]. IEEE Signal Processing Letters, 2012, 19 (8): 471-474. doi: 10.1109/LSP.2012.2188793
    [12]
    Wang Weigang, Yang Zhen, Gu Bin, et al. Adaptive compressed spectrum sensing based on optimized measurement matrix[J]. Journal on Communications, 2014, 35 (8): 33-39.
    [13]
    Zhao Zhijin, Hu Junwei. A sparsity adaptive algorithm for wideband compressive spectrum sensing[J]. Telecommunications Science, 2014, 30 (3): 99-104.
    [14]
    Wang Jian, Kwon S, Li Ping, et al. Recovery of sparsity signals via generalized orthogonal matching pursuit: A new analysis[J]. IEEE Trans Signal Processing, 2016, 64 (4): 1076-1089. doi: 10.1109/TSP.2015.2498132
    [15]
    Malioutov D M, Sanghavi S R, Willsky A S. Sequential compressed sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (2): 435-444. doi: 10.1109/JSTSP.2009.2038211
    [16]
    Zhang Henglong, Song Xiaoqin, Zhu Yonggang, et al. Spectrum sensing algorithm based on variable step-size sequential compressed sampling[J]. Journal of Data Acquisition and Processing, 2015, 30 (4): 839-847.
    [17]
    Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing[J]. IEEE Trans Information Theory, 2010, 56 (4): 1982-2001. doi: 10.1109/TIT.2010.2040894
    [18]
    Yang Cheng, Feng Wei, Feng Hui, et al. A sparsity adaptive subspace pursuit algorithm for compressive sampling[J]. Acta Electronica Sinica, 2010, 38 (8): 1914-1917.
    [19]
    Tian Wenbiao, Fu Zheng, Rui Guosheng. Blind adaptive matching pursuit algorithm for signal reconstruction based on sparsity trial and error[J]. Journal on Communications, 2013, 34 (4): 180-186.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (1478) PDF downloads(166) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return