Volume 30 Issue 4
Apr.  2018
Turn off MathJax
Article Contents
Zhang Jiangmei, Ji Haibo, Feng Xinghua, et al. Nuclide spectrum feature extraction and nuclide identification based on sparse representation[J]. High Power Laser and Particle Beams, 2018, 30: 046003. doi: 10.11884/HPLPB201830.170435
Citation: Zhang Jiangmei, Ji Haibo, Feng Xinghua, et al. Nuclide spectrum feature extraction and nuclide identification based on sparse representation[J]. High Power Laser and Particle Beams, 2018, 30: 046003. doi: 10.11884/HPLPB201830.170435

Nuclide spectrum feature extraction and nuclide identification based on sparse representation

doi: 10.11884/HPLPB201830.170435
  • Received Date: 2017-11-06
  • Rev Recd Date: 2017-11-30
  • Publish Date: 2018-04-15
  • A sparse representation based method for nuclide spectrum feature extraction is proposed. The essence of this method is to decompose the energy spectrum on the best distinguishable sparse atom. The sparse decomposition method is used to decompose the nuclide energy spectrum, and the decomposition coefficient vector is taken as the feature to represent the energy spectrum. The classification model is established by the pattern recognition algorithm to realize the nuclide identification. The main difference from the traditional sparse decomposition method is that we decompose the energy spectrum in accordance with the sparse atoms in the sequential order in sparse dictionary. In the experiments, 6 kinds of radionuclide including 241Am, 133Ba, 60Co, 137Cs, 131I and 152Eu, 1200 energy spectra are used and the average nuclide identification accuracy on 7 different pattern recognition algorithms is 91.71%. The results of statistical tests show that the proposed algorithm performs significantly better than two traditional nuclide spectrum feature extraction methods.
  • loading
  • [1]
    Portnoy D, Fisher B, Phifer D. Data and software tools for gamma radiation spectral threat detection and nuclide identification algorithm development and evaluation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 274-280. doi: 10.1016/j.nima.2014.11.010
    [2]
    Burr T, Hammada M. Radio-isotope identification algorithms for NaI γ spectra[J]. Algorithms, 2009, 2(1): 339-360. doi: 10.3390/a2010339
    [3]
    Uher J, Roach G, Tickner J. Peak fitting and identification software library for high resolution gamma-ray spectra[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619(1): 457-459.
    [4]
    易义成, 宋朝晖, 管兴胤, 等. 溴化镧高剂量率线性响应范围的测定[J]. 强激光与粒子束, 2016, 29: 096002. doi: 10.11884/HPLPB201628.151241

    Yi Yicheng, Song Chaohui, Guan Xingying, et al. Measurement of linear response upper limit for LaBr3 to pulsed gamma radiation. High Power Laser and Particle Beams, 2016, 29: 096002 doi: 10.11884/HPLPB201628.151241
    [5]
    安力, 何铁, 郑普, 等. 伴随粒子法γ能谱本底测量技术[J]. 强激光与粒子束, 2013, 25(11): 3045-3049. doi: 10.3788/HPLPB20132511.3045

    An Li, He Tie, Zheng Pu, et al. Research on γ background spectra in associated particle technique. High Power Laser and Particle Beams, 2013, 25(11): 3045-3049 doi: 10.3788/HPLPB20132511.3045
    [6]
    何剑锋. 低能量分辨率γ能谱数据解析方法研究[D]. 成都: 成都理工大学, 2013.

    He Jianfeng. A study for decomposition method of lower-energy resolution gamma-energy resolution gamma-ray spectra data. Chengdu: Chengdu University of Technology, 2013
    [7]
    Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082
    [8]
    Aha D, Kibler D, Albert M. Instance-based learning algorithms[J]. Machine Learning, 1991, 6(1): 37-66.
    [9]
    George H, Langley P. Estimating continuous distributions in Bayesian classifiers[C]//Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1998: 338-345.
    [10]
    Platt J. Fast training of support vector machines using sequential minimal optimization[M]. Massachusetts: MIT Press, 1999: 185-208.
    [11]
    Frank E, Witten I. Generating accurate rule sets without global optimization[C]//The Fifteenth International Conference on Machine Learning. 1998: 144-151.
    [12]
    Quinlan J. C4.5: programs for machine learning[M]. San Francisco: Morgan Kaufmann Publishers, 1993.
    [13]
    Breiman L, Friedman J, Olshen R, et al. Classification and regression trees[M]. Boca Raton: CRC Press, 1984.
    [14]
    Bouchoux S, Paindavoine M. Implementation of pattern recognition algorithm based on RBF neural network[C]//Proc of SPIE. 2002, 8(18): 4572-4581.
    [15]
    Demsar J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7: 1-30.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article views (1792) PDF downloads(230) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return