Volume 30 Issue 5
May  2018
Turn off MathJax
Article Contents
Fu Kang, Ni Peijun, Tang Shengming, et al. Uncertainty analysis of industrial CT linear size measurement[J]. High Power Laser and Particle Beams, 2018, 30: 055103. doi: 10.11884/HPLPB201830.170439
Citation: Fu Kang, Ni Peijun, Tang Shengming, et al. Uncertainty analysis of industrial CT linear size measurement[J]. High Power Laser and Particle Beams, 2018, 30: 055103. doi: 10.11884/HPLPB201830.170439

Uncertainty analysis of industrial CT linear size measurement

doi: 10.11884/HPLPB201830.170439
  • Received Date: 2017-11-06
  • Rev Recd Date: 2017-12-26
  • Publish Date: 2018-05-15
  • The evaluation of the uncertainty of accelerator industrial CT has always been one of the difficulties in the research and application of industrial CT. In order to evaluate the uncertainty of linear dimension measurement of accelerator industrial CT, an industrial CT size measurement model was established, and the main sources of uncertainty in the measurement were analyzed. Based on the Guide to the Expression of Uncertainty in Measurement (GUM) method, the evaluation of the uncertainty of industrial CT linear dimension was studied. Taking 6 MeV high-energy industrial CT system size measurement as an example, the main uncertainty components of linear dimension measurement of length samples were analyzed, and the uncertainty of the dimension measurement was evaluated. The result is an extended uncertainty of 0.09 mm with an inclusion probability of 0.99, which reflects the accuracy and reliability of industrial CT dimensional measurements. This paper provides a reference for the reliability of the size measurement results of industrial CT.
  • loading
  • [1]
    庄天戈. CT理论与算法[M]. 上海: 上海交通大学出版社, 1992.

    Zhuang Tiange. CT theory and algorithm. Shanghai: Shanghai Jiao Tong University Press, 1992
    [2]
    张朝宗, 郭志平. 工业CT技术和原理[M]. 北京: 科学出版社, 2009.

    Zhang Chaozong, Guo Zhiping. Industrial CT technology and principles. Beijing: Science Press, 2009
    [3]
    Badakhshannoory H, Saeedi P. Automatic liver segmentation from CT scans using multi-layer segmentation and principal component analysis[J]. Advances in Visual Computing, 2010, 6454: 342-350.
    [4]
    张俊哲. 无损检测技术及其应用[M]. 北京: 科学出版社, 2010.

    Zhang Junzhe. Nondestructive testing technology and its application. Beijing: Science Press, 2010
    [5]
    Hsieh J. 计算机断层成像技术——原理、设计、伪像和进展[M]. 北京: 科学出版社, 2006: 1-71.

    Hsieh J. Computed tomography, principle, design, artifacts and recent advances. Beijing: Science Press, 2006: 1-71
    [6]
    European Committee for Standardization. ISO/DIS 15708-1, Non-destructive testing—Radiation methods—computed tomography—Part1: Principle, equipment and samples[S]. Geneva: International Organization for Standardization, 2016.
    [7]
    平雪良, 周儒荣, 党耀国. 未知自由曲面三坐标测量新方法[J]. 机械科学与技术, 2005, 24(4): 491-493. doi: 10.3321/j.issn:1003-8728.2005.04.032

    Ping Xueliang, Zhou Rurong, Dang Yaoguo. A new method of coordinate measurement for unknown free-form surfaces. Mechanical Science and Technology for Aerospace Engineering, 2005, 24(4): 491-493 doi: 10.3321/j.issn:1003-8728.2005.04.032
    [8]
    De Chiffre L, Carmignato S, Kruth J P. Industrial applications of computed tomography[J]. CIRP Annals-Manufacturing Technology, 2014, 63: 655-677. doi: 10.1016/j.cirp.2014.05.011
    [9]
    刘艳萍, 马燕, 张晶, 等. 工业技术在炸药装药质量检测中的应用[J]. 计测技术, 2013, 33: 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJC2013S1023.htm

    Liu Yanping, Ma Yan, Zhang Jing, et al. Application of industrial technology in quality inspection of explosive charge. Metrology & Measurement Technology, 2013, 33: 69-72 https://www.cnki.com.cn/Article/CJFDTOTAL-HKJC2013S1023.htm
    [10]
    Bartscher M, Ehrig K, Goebbels J, et al. Dimensional control of micro components with synchrotron computed tomography[C]//AIP Conference Proceedings. 2010, 1221(1): 164-171.
    [11]
    Bartscher M, Hilpert U, Fiedler D. Determination of the measurement uncertainty of computed tomography measurements using a cylinder head as an example[J]. Technisches Messen, 2008, 75(3): 178-186. doi: 10.1524/teme.2008.0822
    [12]
    Batenburg K J, Sijbers J. Adaptive thresholding of tomograms by projection distance minimization[J]. Pattern Recognition, 2009, 42(10): 2297-2305. doi: 10.1016/j.patcog.2008.11.027
    [13]
    Bartscher M, Krystek M. Method for a traceable geometry assessment of arbitrarily shaped sculptured surfaces[C]//10th Int Symp on Measurement and Qaulity Control(ISMQC). 2010.
    [14]
    Dewulf W, Kiekens K, Tan Y. Uncertainty determination and quantification for dimensional measurements with industrial computed tomography[J]. CIRP Annals—Manufacturing Technology, 2013, 62: 535-538. doi: 10.1016/j.cirp.2013.03.017
    [15]
    胡林福. 测量不确定度与误差的区别[J]. 质量技术监督研究, 2009(1): 55-56. https://www.cnki.com.cn/Article/CJFDTOTAL-FJXX200901017.htm

    Hu Linfu. Differences between measurement uncertainty and error. Quality and Technical Supervision Research, 2009(1): 55-56 https://www.cnki.com.cn/Article/CJFDTOTAL-FJXX200901017.htm
    [16]
    胡巧开, 邓真丽, 付勤. 不确定度及其应用探讨[J]. 湖北师范学院学报, 2010, 30(2): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSF201002024.htm

    Hu Qiaokai, Deng Zhenli, Fu Qin. Discussion on uncertainty and its application. Journal of Hubei Normal University, 2010, 30(2): 104-109 https://www.cnki.com.cn/Article/CJFDTOTAL-HBSF201002024.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views (1728) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return