Volume 30 Issue 5
May  2018
Turn off MathJax
Article Contents
Yang Wei, Zhou Qianhong, Dong Zhiwei. Kinetic study on microwave discharge plasma and its afterglow[J]. High Power Laser and Particle Beams, 2018, 30: 053007. doi: 10.11884/HPLPB201830.170447
Citation: Yang Wei, Zhou Qianhong, Dong Zhiwei. Kinetic study on microwave discharge plasma and its afterglow[J]. High Power Laser and Particle Beams, 2018, 30: 053007. doi: 10.11884/HPLPB201830.170447

Kinetic study on microwave discharge plasma and its afterglow

doi: 10.11884/HPLPB201830.170447
  • Received Date: 2017-11-08
  • Rev Recd Date: 2018-03-07
  • Publish Date: 2018-05-15
  • Gas discharge plasmas generated by μs-pulse focused microwaves are investigated. The model is based on a self-consistent solution to Helmholtz equation for microwave field, particle continuity equations, and the energy balance equations, coupled with plasma kinetics. Two recent experiments are studied: a. sub-megawatt (MW) X-band 9.4 GHz microwave breakdown in nitrogen; b. MW-class W-band 110 GHz microwave breakdown in 100-10 000 Pa air. In experiment a, the tracked density of electronic states N2(C3Πu) agreed with the measured intensity from second positive system (SPS) of optical emission spectroscopy (OES). In experiment b, the simulation results reproduced the dependence of nitrogen vibrational and translational temperature on air pressure measured by OES. The underlying mechanisms for the above coincidences are unveiled.
  • loading
  • [1]
    Oda Y, Komurasaki K, Takahashi K, et al. Plasma generation using high-power millimeter-wave beam and its application for thrust generation[J]. J Appl Phys, 2006, 100: 113307. doi: 10.1063/1.2399899
    [2]
    Granatstein V L, Nusinovich G S. Detecting excess ionizing radiation by electromagnetic breakdown of air[J]. J Appl Phys, 2010, 108: 063304. doi: 10.1063/1.3484044
    [3]
    Imai T, Kobayashi N, Temkin R, et al. ITER R&D: Auxiliary systems: Electron cyclotron heating and current drive system[J]. Fusion Eng Des, 2001, 55: 281-289. doi: 10.1016/S0920-3796(01)00203-4
    [4]
    Hidaka Y, Choi E M, Mastovsky I, et al. Observation of large arrays of plasma filaments in air breakdown by 1.5-MW 110-GHz gyrotron pulses[J]. Phys Rev Lett, 2008, 100: 035003. doi: 10.1103/PhysRevLett.100.035003
    [5]
    Mesko M, Bonaventura Z, Vasina P, et al. An experimental study of high power microwave pulsed discharge in nitrogen[J]. Plasma Sources Sci Technol, 2006, 15: 574-581. doi: 10.1088/0963-0252/15/3/037
    [6]
    Bonaventura Z, Trunec D, Mesko M, et al. Self-consistent spatio-temporal simulation of pulsed microwave discharge[J]. J Phys D: Appl Phys, 2008, 41: 015210. doi: 10.1088/0022-3727/41/1/015210
    [7]
    Nam S K, Verboncoeur J P. Theory of filamentary plasma array formation in microwave breakdown at near-atmospheric pressure[J]. Phys Rev Lett, 2009, 103: 055004. doi: 10.1103/PhysRevLett.103.055004
    [8]
    Boeuf J P, Chaudhury B, Zhu G. Theory and modeling of self-organization and propagation of filamentary plasma arrays in microwave breakdown at atmospheric pressure[J]. Phys Rev Lett, 2010, 104: 015002. doi: 10.1103/PhysRevLett.104.015002
    [9]
    Zhou Qianhong, Dong Zhiwei. Modeling study on pressure dependence of plasma structure and formation in 110 GHz microwave air breakdown[J]. Appl Phys Lett, 2011, 98: 161504. doi: 10.1063/1.3583452
    [10]
    Semenov V E, Rakova E I, Glyavin M Y, et al. Breakdown simulations in a focused microwave beam with the simplified model[J]. Phys Plasma, 2016, 23: 073109. doi: 10.1063/1.4958313
    [11]
    Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Sci Technol, 2005, 14 (4): 722. doi: 10.1088/0963-0252/14/4/011
    [12]
    Phelps A V, Pitchford L C. Anisotropic scattering of electron by N2 and its effect on electron transport[J]. Phy Rev A, 1985, 31: 2932. doi: 10.1103/PhysRevA.31.2932
    [13]
    Capitelli M, Ferreira C M, Gordiets B F, et al. Plasma kinetics in atmospheric gases[M]. New York: Springer-Verlag, 2000.
    [14]
    Popov N A. Fast gas heating in a nitrogen-oxygen discharge plasma: Ⅰ. Kinetic mechanism[J]. J Phys D: Appl Phys, 2011, 44: 285201. doi: 10.1088/0022-3727/44/28/285201
    [15]
    Kimura T, Akatsuka K, Ohe K. Experimental and theoretical investigations of DC glow discharges in argon-nitrogen mixtures[J]. J Phys D: Appl Phys, 1994, 27: 1664-1671. doi: 10.1088/0022-3727/27/8/013
    [16]
    Kossyi I A, Kostinsky A Y, Matveyev A A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Sci Technol, 1992, 1(3): 207. doi: 10.1088/0963-0252/1/3/011
    [17]
    Aleksandrov N L, Kindysheva S V, Kirpichnikov A A, et al. Plasma decay in N2, CO2 and H2O excited by high-voltage nanosecond discharge[J]. J Phys D: Appl Phys, 2007, 40: 4493-4502. doi: 10.1088/0022-3727/40/15/019
    [18]
    Florescu-Mitchell A I, Mitchell J B A. Dissociative recombination[J]. Phys Rep, 2006, 430: 277-374. doi: 10.1016/j.physrep.2006.04.002
    [19]
    Yang Wei, Zhou Qianhong, Dong Zhiwei. Simulation study on nitrogen vibrational kinetics in a single nanosecond pulse high voltage air discharge[J]. AIP Adv, 2016, 6: 055209. doi: 10.1063/1.4950797
    [20]
    朱国强, Boeuf J P, 李进贤. 压强与功率对高气压空气微波放电自组织结构影响的数值研究[J]. 物理学报2012, 23: 235202. doi: 10.7498/aps.61.235202

    Zhu Guoqiang, Boeuf J P, Li Jinxian. Effects of pressure and incident power on self-organization pattern structure during microwave breakdown in high pressure air. Acta Physica Sinica, 2012, 23: 235202 doi: 10.7498/aps.61.235202
    [21]
    Yang Wei, Zhou Qianhong, Dong Zhiwei. Kinetic study on gas discharge plasma generated by focused microwaves[C]//Proc 33rd International Conference on Phenomena in Ionized Gases. 2017: 59.
    [22]
    Mesko M, Bonaventura Z, Vasina P, et al. Electron density measurements in afterglow of high power pulsed microwave discharge[J]. Plasma Sources Sci Technol, 2004, 13: 562-568. doi: 10.1088/0963-0252/13/4/002
    [23]
    Yang Wei, Zhou Qianhong, Dong Zhiwei. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser[J]. J Appl Phys, 2016, 120: 083302. doi: 10.1063/1.4961951
    [24]
    Hummelt J S, Shapiro M A, Temkin R J. Spectroscopic temperature measurements of air breakdown plasma using a 110 GHz megawatt gyrotron beam[J]. Phys Plasmas, 2012, 19: 123509. doi: 10.1063/1.4773037
    [25]
    石宝凤, 林文斌, 赵朋程, 等. 等效电离参数对110 GHz高功率微波放电离子体的影响[J]. 中国科学: 物理学力学天文学, 2015, 45: 025201. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201502008.htm

    Shi Baofeng, Lin Wenbin, Zhao Pengcheng, et al. Effect of effective ionization parameters on the 110 GHz high-power microwave discharge plasma in air. Sci Sin-Phys Mech Astron, 2015, 45: 025201 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201502008.htm
    [26]
    Yang Wei, Zhou Qianhong, Dong Zhiwei. Simulation study on nitrogen vibrational and translational temperature in air breakdown plasma generated by 110 GHz focused microwave pulse[J]. Phys Plasmas, 2017, 24: 013111. doi: 10.1063/1.4974161
    [27]
    Yang Wei, Dong Zhiwei. Electron-vibrational energy exchange in nitrogen-containing plasma: a comparison between an analytical approach and a kinetic model[J]. Plasma Sci Technol, 2016, 18(1): 12-16. doi: 10.1088/1009-0630/18/1/03
    [28]
    蔡北兵, 余道杰, 周东方, 等. 氧负离子解吸附过程HPM大气击穿弛豫时间分析[J]. 强激光与粒子束, 2017, 29: 113004. doi: 10.11884/HPLPB201729.170265

    Cai Beibing, Yu Daojie, Zhou Dongfang, et al. Analysis of air breakdown relaxation time of high power microwave based on O- detachment. High Power Laser and Particle Beams, 2017, 29: 113004 doi: 10.11884/HPLPB201729.170265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views (1418) PDF downloads(171) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return