Volume 30 Issue 9
Sep.  2018
Turn off MathJax
Article Contents
Shi Xiangyang, Liu Jie, Jiang Jun, et al. 220 GHz tripler based on compact suspended microstrip resonator cell filter structure and Schottky varactors[J]. High Power Laser and Particle Beams, 2018, 30: 093101. doi: 10.11884/HPLPB201830.180104
Citation: Shi Xiangyang, Liu Jie, Jiang Jun, et al. 220 GHz tripler based on compact suspended microstrip resonator cell filter structure and Schottky varactors[J]. High Power Laser and Particle Beams, 2018, 30: 093101. doi: 10.11884/HPLPB201830.180104

220 GHz tripler based on compact suspended microstrip resonator cell filter structure and Schottky varactors

doi: 10.11884/HPLPB201830.180104
  • Received Date: 2018-04-09
  • Rev Recd Date: 2018-05-24
  • Publish Date: 2018-09-15
  • A 220 GHz unbalanced tripler based on Schottky varactors was designed. The Schottky varactors were measured to extract parameters for modeling Schottky diodes. A lump equivalent circuit model of Schottky diode was established for 220 GHz tripler circuits design. To reduce the signal transmission loss, a compact suspended microstrip resonator cell (CSMRC) filter structure was introduced to reduce low pass filter circuit length. Since it was difficult to achieve full-wave impedance matching in 220 GHz tripler circuit design, we adopted a method of adjusting impedance matching in overall circuit structure harmonic balance simulation to design a 220 GHz tripler circuit. Finally, the designed 220 GHz tripler was measured and discussed. The experiment shows the output power and efficiency between 213.1 GHz and 221.6 GHz are above 10 mW and 5%, respectively. The maximum output power is 18.7 mW at 218.6 GHz and the maximum efficiency is 8.24% at 217.9 GHz.
  • loading
  • [1]
    Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
    [2]
    Hangyo M. Development and future prospects of terahertz technology[J]. Japanese Journal of Applied Physics, 2015, 54(12): 120101. doi: 10.7567/JJAP.54.120101
    [3]
    Belkin M A, Wang Q J, Pflugl C, et al. High-temperature operation of terahertz quantum cascade laser sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 952-967. doi: 10.1109/JSTQE.2009.2013183
    [4]
    Shi X, Wu Y, Wang D, et al. Enhancing power density of strained In0.8Ga0.2As/AlAs resonant tunneling diode for terahertz radiation by optimizing emitter spacer layer thickness[J]. Superlattices & Microstructures, 2017, 112: 435-441.
    [5]
    Maestrini A, Ward J S, Gill J J, et al. A frequency-multiplied source with more than 1 mW of power across the 840-900-GHz band[J]. IEEE Trans Microwave Theory & Techniques, 2010, 58(7): 1925-1932.
    [6]
    Siles J V, Grajal J. Physics-based design and optimization of Schottky diode frequency multipliers for terahertz applications[J]. IEEE Trans Microwave Theory & Techniques, 2010, 58(7): 1933-1942.
    [7]
    Chattopadhyay G. Technology, Capabilities, and Performance of low power terahertz sources[J]. IEEE Trans Terahertz Science & Technology, 2012, 1(1): 33-53.
    [8]
    Maestrini A, Ward J S, Gill J J, et al. A 540-640-GHz high-efficiency four-anode frequency tripler[J]. IEEE Trans Microwave Theory & Techniques, 2005, 53(9): 2835-2843.
    [9]
    Maestrini A, Mehdi I, Siles J V, et al. Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz[J]. IEEE Trans Terahertz Science & Technology, 2012, 2(2): 177-185.
    [10]
    蒋均, 张健, 邓贤进, 等. 340 GHz基于肖特基二极管未匹配电路倍频源[J]. 红外与激光工程, 2014, 43(12): 4028-4034. doi: 10.3969/j.issn.1007-2276.2014.12.033

    Jiang Jun, Zhang Jian, Deng Xianjin, et al. 340 GHz frequency multiplier without matching circuit based on Schottky diodes. Infrared and Laser Engineering, 2014, 43(12): 4028-4034 doi: 10.3969/j.issn.1007-2276.2014.12.033
    [11]
    姚常飞, 周明, 罗运生, 等. 基于倒扣技术的190~225 GHz肖特基二极管高效率二倍频器[J]. 红外与毫米波学报, 2015, 34(1): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201501002.htm

    Yao Changfei, Zhou Ming, Luo Yunsheng, et al. A 190-225 GHz high efficiency Schottky diode doubler with circuit substrate flip-chip mounted. Journal of Infrared and Millimeter Waves, 2015, 34(1): 6-9 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201501002.htm
    [12]
    Pardo D, Grajal J, Pérez-Moreno C G, et al. An assessment of available models for the design of Schottky-based multipliers up to THz frequencies[J]. IEEE Trans Terahertz Science & Technology, 2017, 4(2): 277-287.
    [13]
    Grajal J, Krozer V, Gonzalez E, et al. Modeling and design aspects of millimeter-wave and submillimeter-wave Schottky diode varactor frequency multipliers[J]. IEEE Trans Microwave Theory & Techniques, 2000, 48(4): 700-711.
    [14]
    Lipsey R E, Jones S H, Jones J R, et al. Monte Carlo harmonic-balance and drift-diffusion harmonic-balance analyses of 100-600 GHz Schottky barrier varactor frequency multipliers[J]. IEEE Trans Electron Devices, 1997, 44(11): 1843-1850. doi: 10.1109/16.641351
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1087) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return