Volume 31 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
Wu Liheng, Wang Minghong. Photonic crystal filter with 1×5 dielectric rod tuning beside a resonant cavity[J]. High Power Laser and Particle Beams, 2019, 31: 014101. doi: 10.11884/HPLPB201931.180227
Citation: Wu Liheng, Wang Minghong. Photonic crystal filter with 1×5 dielectric rod tuning beside a resonant cavity[J]. High Power Laser and Particle Beams, 2019, 31: 014101. doi: 10.11884/HPLPB201931.180227

Photonic crystal filter with 1×5 dielectric rod tuning beside a resonant cavity

doi: 10.11884/HPLPB201931.180227
  • Received Date: 2018-08-06
  • Rev Recd Date: 2018-12-10
  • Publish Date: 2019-01-15
  • Pass-band filter based on a tunable cavity is designed in 2-dimentional square-lattice photonic crystal structure. Operational transmission bands of the waveguide and cavity system are adjusted by changing positions of tuning dielectric rods beside the 1×5 resonant cavity. The effects of input port coupling decay ratio and input port detuning factors on the filter are analyzed by using CMT(Coupled-Mode Theory). Wavelength transmission spectra of the filter are calculated with the help of FDTD (finite difference time domain) method. The results show that -3 dB band width Δλ of output 38 pass-bands ranges from 4.18 nm to 11.15 nm when the filter operates over 1320-1810 nm wavelength band. Pass-band peak wavelength tuning width of the proposed structure is 186.56 nm. The micro filter is suitable for optical telecommunication course Wavelength Division Demultiplexing(WDDM) system design and optical integration design etc.
  • loading
  • [1]
    John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [2]
    Mohammad A, Alireza T. Design and simulation of an optical channel drop filter based on two dimensional photonic crystal single ring race track resonator[J]. International Journal of Natural and Engineering Sciences, 2013, 7(1): 14-18.
    [3]
    Tavousi A, Mansouri-Birjandi M A, Saffari M, et al. Add-drop and channel-drop optical filters based on photonic crystal ring resonators[J]. International Journal of Communications and Information Technology, 2012, 1(2): 19-24.
    [4]
    Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M, et al. A new proposal for PCRR-based channel drop filter using elliptical rings[J]. Physica E, 2014, 56(2): 211-215.
    [5]
    Qiao F, Zhang C, Wan J, et al. Photonic quantum-well structures multiple channeled filtering phenomena[J]. Applied Physics, 2000, 77(23): 3698-3700.
    [6]
    Alipour-Banaei H, Mehdizadeh F. Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters[J]. Optik, 2013, 124(17): 2639-2644. doi: 10.1016/j.ijleo.2012.07.029
    [7]
    Dideban A, Habibiyan H, Ghafoorifard H. Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems[J]. Physica E: Low-dimensional Systems and Nanostructures, 2017, 87: 77-83. doi: 10.1016/j.physe.2016.11.022
    [8]
    Balaji V R, Murugan M, Robinson S. DWDM demultiplexer using inverted-p photonic crystal structure[J]. International Journal of Applied Engineering Research, 2015, 10(6): 0973-4562.
    [9]
    Hsueh W J, Wun S J, Lin Z J, et al. Features of the perfect transmission in Thue-Morse dielectric multilayers[J]. Journal of Optical Society of America B, 2011, 28(11): 2584-2591. doi: 10.1364/JOSAB.28.002584
    [10]
    Yusoff M H, Abu Hassan H, Hashim M R, et al. Hybrid photonic crystal 1.31/1.55 μm wavelength division multiplexer based on coupled line defect channels[J]. Optics Communication, 2011, 284(5): 1223-1227. doi: 10.1016/j.optcom.2010.11.018
    [11]
    Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Comput Phys, 1994, 114(2): 185-200. doi: 10.1006/jcph.1994.1159
    [12]
    Goldberg M. Stability criteria for finite difference approximations to parabolic systems[J]. Applied Numerical Mathematics, 2000, 33(1/4): 509-515.
    [13]
    Zhu Z, Brown T G. Full-vectorial finite-difference analysis of microstructured optical fibers[J]. Opt Express, 2002, 10(17): 853-864. doi: 10.1364/OE.10.000853
    [14]
    Ghaffari A, Monifi F, Djavid M, et al. Photonic crystal bends and power splitters based on ring resonators[J]. Optics Communications, 2008, 281(23): 5929-5934. doi: 10.1016/j.optcom.2008.09.015
    [15]
    Ghaffari A, Monifi F, Djavid M, et al. Analysis of photonic crystal power splitters with different configurations[J]. Journal of Applied Sciences, 2008, 8(8): 1416-1425. doi: 10.3923/jas.2008.1416.1425
    [16]
    Moloudian G, Sabbaghi-Nadooshan R, Hassangholizadeh-Kashtiban M. Design of all-optical tunable filter based on two-dimensional photonic crystals for WDM (wavedivision multiplexing) applications[J]. Journal of the Chinese Institute of Engineers, 2016, 39(8): 1-6.
    [17]
    Ahmad H, Reduan S A, Zulkifli A Z, et al. Tunable passively Q-switched thulium-fluoride fiber laser in the S+/S band (1450.0 to 1512.0 nm) region using a single-walled carbon-nanotube-based saturable absorber[J]. Applied Optics, 2017, 56(13): 3841-3847. doi: 10.1364/AO.56.003841
    [18]
    Gao F, Luo S, Ji H M, et al. Flat-topped ultrabroad stimulated emission from chirped InAs/InP quantum dot laser with spectral width of 92 nm[J]. Applied Physics Letters, 2016, 108(20): 883-795.
    [19]
    Xu H, Shi Y. Ultra-broadband 16-channel mode division (de)multiplexer utilizing densely packed bent waveguide arrays[J]. Optics Letters, 2016, 41(20): 4815-4818. doi: 10.1364/OL.41.004815
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (1065) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return