Volume 31 Issue 6
Jul.  2019
Turn off MathJax
Article Contents
Ding Man. Total dose effect of HfO2 based MOS capacitors under gamma-ray radiation[J]. High Power Laser and Particle Beams, 2019, 31: 066001. doi: 10.11884/HPLPB201931.180330
Citation: Ding Man. Total dose effect of HfO2 based MOS capacitors under gamma-ray radiation[J]. High Power Laser and Particle Beams, 2019, 31: 066001. doi: 10.11884/HPLPB201931.180330

Total dose effect of HfO2 based MOS capacitors under gamma-ray radiation

doi: 10.11884/HPLPB201931.180330
  • Received Date: 2018-11-19
  • Rev Recd Date: 2019-02-21
  • Publish Date: 2019-07-15
  • HfO2 film with the thickness of 7.8nm is deposited on p type silicon by using atomic layer deposition method, and aluminum is sputtered on top of the HfO2 film to form Al/HfO2/Si MOS structure. The surface morphology of HfO2 is taken by using atomic force microscopy, and the surface quality is approved to be high with low surface roughness and high uniformity. The radiation induced oxide and interface trapped charge density are in the order of 1012cm-2, which is larger than that in SiO2 with the same equivalent oxide thickness. Moreover, the radiation induced oxide trapped charge density increases with the increase of irradiation total dose, the radiation induced interface trapped charge can be either positive or negative. The chemical structure of the HfO2 film is measured by XPS and oxygen vacancy is found to be the dominant radiation induced traps inside the film HfO2.
  • loading
  • [1]
    Shelden G V. Review of the 2001 ITRS Update[C]//Proc of SPIE. 2002: 4764: 9-17.
    [2]
    Ma T P, Dressendorfer P V. Ionizing radiation effects in MOS devices and circuits[M]. New Jersey: John Wiley & Sons, 1989.
    [3]
    庞健, 何小中, 杨柳, 等. 30 MeV电子束轰击旋转钽靶产生轫致辐射分析[J]. 强激光与粒子束, 2017, 29: 065101. doi: 10.11884/HPLPB201729.160502

    Pang Jian, He Xiaozhong, Yang Liu, et al. Analysis on bremsstrahlung characteristics of 30 MeV multi-pulse beams bombarding rotating tantalum-based target. High Power Laser and Particle Beams, 2017, 29: 065101 doi: 10.11884/HPLPB201729.160502
    [4]
    王毅, 李勤, 代志勇. 蒙特卡罗模拟分析电子束发射度对照射量空间分布影响[J]. 强激光与粒子束, 2017, 29: 065006. doi: 10.11884/HPLPB201729.170029

    Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation. High Power Laser and Particle Beams, 2017, 29: 065006 doi: 10.11884/HPLPB201729.170029
    [5]
    毕岚, 薛谦忠, 席宝坤. 用于瞬态高功率脉冲辐射的超宽带天线设计[J]. 强激光与粒子束, 2018, 30: 083007. doi: 10.11884/HPLPB201830.180001

    Bi Lan, Xue Qianzhong, Xi Baokun. Design of ultra-wideband antenna for high-power transient pulse radiation. High Power Laser and Particle Beams, 2018, 30: 083007 doi: 10.11884/HPLPB201830.180001
    [6]
    冯加明, 邹德慧, 范晓强, 等. 双极晶体管中子注量探测器的标定[J]. 强激光与粒子束, 2018, 30: 096008. doi: 10.11884/HPLPB201830.180138

    Feng Jiaming, Zou Dehui, Fan Xiaoqiang, et al. Calibration of bipolar transistor neutron fluence detector. High Power Laser and Particle Beams, 2018, 30: 096008 doi: 10.11884/HPLPB201830.180138
    [7]
    薛院院, 王祖军, 刘静, 等. CCD质子辐照损伤效应的三维蒙特卡罗模拟[J]. 强激光与粒子束, 2018, 30: 044001. doi: 10.11884/HPLPB201830.170248

    Xue Yuanyuan, Wang Zujun, Liu Jing, et al. Numerical calculation and analysis of proton radiation effects on CCD based on Monte Carlo method. High Power Laser and Particle Beams, 2018, 30: 044001 doi: 10.11884/HPLPB201830.170248
    [8]
    王宇航, 高杨, 韩宾, 等. 薄膜体声波谐振器的伽马辐照敏感机理分析[J]. 强激光与粒子束, 2017, 29: 074101. doi: 10.11884/HPLPB201729.170007

    Wang Yuhang, Gao Yang, Han Bin, et al. Analysis on gamma irradiation sensing mechanisms of thin film bulk acoustic resonators. High Power Laser and Particle Beams, 2017, 29: 074101 doi: 10.11884/HPLPB201729.170007
    [9]
    严维鹏, 李斌康, 宋顾周, 等. 闪烁体衰减常数对辐射源边界测量影响数值模拟[J]. 强激光与粒子束, 2017, 29: 066004. doi: 10.11884/HPLPB201729.160470

    Yan Weipeng, Li Binkang, Song Guzhou, et al. Numerical simulation of scintillant decay constant effect on radiation source boundary measurement. High Power Laser and Particle Beams, 2017, 29: 066004 doi: 10.11884/HPLPB201729.160470
    [10]
    Massengill L W, Choi B K, Fleetwood D M, et al. Heavy-ion-induced breakdown in ultra-thin gate oxides and high-k dielectrics[J]. IEEE Trans Nuclear Science, 2001, 48 (6): 1904-1912. doi: 10.1109/23.983149
    [11]
    Fleetwood D M, Thome F V, Tsao S S, et al. High-temerature silicon-on-insulator electronics for space nuclear-power systems: requirements and feasibility[J]. IEEE Trans Nuclear Science, 1988, 35 (5): 1099-1112. doi: 10.1109/23.7506
    [12]
    Fleetwood D M. Long-term annealing study of midgap inter-face-trap charge neutrality[J]. Applied Physics Letters, 1992, 60 (23): 2883-2885. doi: 10.1063/1.106807
    [13]
    Fleetwood D M, Winokur P S, Schwank J R. Using laboratory X-ray and Co-60 irradiations to predict CMOS device response in strategic and space environments[J]. IEEE Trans Nuclear Science, 1988, 35(6): 1497-1505. doi: 10.1109/23.25487
    [14]
    Fleetwood D M. Fast and slow border traps in MOS devices[J]. IEEE Trans Nuclear Science, 1996, 43 (3): 779-786. doi: 10.1109/23.510713
    [15]
    Fleetwood D M. Effects of hydrogen transport and reactions on microelectronics radiation response and reliability[J]. Microelec-tronics Reliability, 2002, 42 (4/5): 523-541.
    [16]
    Fleetwood D M, Beegle R W, Sexton F W, et al. Using a 10-keV X-ray source for hardness assurance[J]. IEEE Trans Nuclear Science, 1986, 33 (6): 1330-1336. doi: 10.1109/TNS.1986.4334601
    [17]
    Fleetwood D M, Cnes. Fast and slow border traps in MOS devices[C]//Proc RADECS 95 -(Third European Conference on Radiation and Its Effects on Components and Systems). 1996: 1-8.
    [18]
    Fleetwood D M, Miller S L, Reber R A, et al. New insights into radiation-induced oxide-trap charge through thermally-stimulated-current measurement and analysis[J]. IEEE Trans on Nuclear Science, 1992, 39 (6): 2192-2203. doi: 10.1109/23.211421
    [19]
    Fleetwood D M, Reber R A, Winokur P S. Effect of bias on thermally stimulated current (TSC) in irradiated MOS devices[J]. IEEE Trans Nuclear Science, 1991, 38 (6): 1066-1077. doi: 10.1109/23.124076
    [20]
    Fleetwood D M, Rodgers M P, Tsetseris L, et al. Effects of device aging on microelectronics radiation response and reliability[J]. Microelectronics Reliability, 2007, 47 (7): 1075-1085. doi: 10.1016/j.microrel.2006.06.009
    [21]
    Fleetwood D M, Saks N S. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides[J]. Journal of Applied Physics, 1996, 79(3): 1583-1594. doi: 10.1063/1.361002
    [22]
    Fleetwood D M, Scofield J H. Evidence that similar point-defects cause 1/f noise and radiation-induced-hole trapping in metal-oxide-semiconductor transistors[J]. Physical Review Letters, 1990, 64 (5): 579-582. doi: 10.1103/PhysRevLett.64.579
    [23]
    Fleetwood D M, Shaneyfelt M R, Riewe L C, et al. The role of border traps in MOS high-temperature postirradiation annealing response[J]. IEEE Trans Nuclear Science, 1993, 40 (6): 1323-1334. doi: 10.1109/23.273535
    [24]
    Fleetwood D M, Shaneyfelt M R, Schwank J R. Estimating oxide-trap, interface-trap, and border-trap charge-densities in metal-oxide-semiconductor transistors[J]. Applied Physics Letters, 1994, 64 (15): 1965-1967. doi: 10.1063/1.111757
    [25]
    Fleetwood D M, Shaneyfelt M R, Warren W L, et al. Border traps: issues for MOS radiation response and long-term reliability[J]. Microelectronics and Reliability, 1995, 35(3): 403-428. doi: 10.1016/0026-2714(95)93068-L
    [26]
    Fleetwood D M, Warren W L, Schwank J R, et al. Effects of interface traps and border traps on MOS postirradiation annealing response[J]. IEEE Trans Nuclear Science, 1995, 42(6): 1698-1707. doi: 10.1109/23.488768
    [27]
    Fleetwood D M, Winokur P S, Reber R A, et al. Effects of oxide traps, interface traps, and border traps on metal-oxide-semiconductor devices[J]. Journal of Applied Physics, 1993, 73(10): 5058-5074. doi: 10.1063/1.353777
    [28]
    Fleetwood D M, Winokur P S, Riewe L C, et al. Bulk oxide traps and border traps in metal-oxide-semiconductor capacitors[J]. Journal of Applied Physics, 1998, 84 (11): 6141-6148. doi: 10.1063/1.368881
    [29]
    Fleetwood D M, Xiong H D, Lin J S. 1/f noise in SOI buried oxides and alternative dielectrics to SiO2[C]//Noise in Devices and Circuits Ⅲ. 2005: 63-74.
    [30]
    Fleetwood D M, Xiong H D, Lu Z Y, et al. Unified model of hole trapping, 1/f noise, and thermally stimulated current in MOS devices[J]. IEEE Trans Nuclear Science, 2002, 49(6): 2674-2683. doi: 10.1109/TNS.2002.805407
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (1061) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return