Volume 31 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
Yang Hang, Liu Xiaoyong, Ma Dengqiu, et al. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31: 022001. doi: 10.11884/HPLPB201931.180340
Citation: Yang Hang, Liu Xiaoyong, Ma Dengqiu, et al. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31: 022001. doi: 10.11884/HPLPB201931.180340

Fluid dynamics analysis method for MRF of first order discontinuous optical elements

doi: 10.11884/HPLPB201931.180340
  • Received Date: 2018-11-28
  • Rev Recd Date: 2019-01-18
  • Publish Date: 2019-02-15
  • Magnetorheological finishing of first-order discontinuous optical elements is one of the difficult problems that restrict the development of high-precision and high-efficiency optical manufacturing in China. In this paper, a fluid dynamics analysis method for magnetorheological finishing concerning the first order discontinuous optical elements is presented. Firstly, reasonable assumptions are made for the flow field under the practical condition of magnetorheological finishing. Secondly, based on the micro-element hydrodynamic equation, a flow field analysis method suitable for the first order discontinuous surface shape is established. Finally, a numerical calculation method for the flow field governing equation is established based on the finite difference method and numerical iteration method. Through numerical simulation for cutting distance ranging over 1~18 mm, it is found that the pressure distribution pattern of the first-order discontinuous surface obtained by the proposed method is correct, and the discontinuous pressure drop generated by the proposed method is consistent with that of the experimental observation.
  • loading
  • [1]
    Harris D. History of magnetorheological finishing[C]//Proc of SPIE. 2011: 80160N.
    [2]
    杨力. 先进光学制造技术[M]. 北京: 科学出版社, 2001.

    Yang Li. Advanced optical manufacturing technology. Beijing: Science Press, 2001
    [3]
    Tricard M, Dumas P, Forbes G. Subaperture approaches for asphere polishing and metrology[C]//Proc of SPIE. 2005, 5638: 284-299.
    [4]
    彭小强. 确定性磁流变抛光的关键技术研究[D]. 长沙: 国防科学技术大学, 2004.

    Peng Xiaoqiang. Research on the key technology of deterministic magnetorheological polishing. Changsha: National University of Defense Technology, 2004
    [5]
    Beier M, Scheiding S, Gebhardt A, et al. Fabrication of high precision metallic freeform mirrors with Magnetorheological Finishing(MRF)[C]//Proc of SPIE. 2013: 88840S.
    [6]
    Schinhaerl M, Raschera R, Stampb R, et al. Filter algorithm for influence functions in the computer controlled polishing of high-quality optical lenses[J]. International Journal of Machine Tools & Manufacture, 2006, 47: 107-111.
    [7]
    戴一帆. 大中型光学非球面镜制造与测量新技术[M]. 北京: 国防工业出版社, 2011.

    Dai Yifan. New technology for manufacturing and measuring large and medium-sized optical aspherical mirrors. Beijing: National Defense Industry Press, 2011
    [8]
    罗勇. 二次非球面镜参数求解模型及求解算法研究[J]. 科学技术与工程, 2010, 10(36): 8968-8971. doi: 10.3969/j.issn.1671-1815.2010.36.006

    Luo Yong. Research on solving model and algorithm of parameters of quadratic aspherical mirror. Science Technology and Engineering, 2010, 10(36): 8968-8971 doi: 10.3969/j.issn.1671-1815.2010.36.006
    [9]
    宋辞. 离轴非球面光学零件磁流变抛光关键技术研究[D]. 长沙: 国防科学技术大学, 2012.

    Song Ci. Research on the key technology of magnetorheological polishing for off-axis aspheric optical parts. Changsha: National University of Defense Technology, 2012
    [10]
    刘振宇, 罗霄, 邓伟杰, 等. 大口径非球面的组合加工[J]. 光学精密工程, 2013, 21(11): 2791-2797. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201311009.htm

    Liu Zhenyu, Luo Xiao, Deng Weijie, et al. Combined machining of large diameter aspheric surface. Optical Precision Engineering, 2013, 21(11): 2791-2797 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201311009.htm
    [11]
    Johns M. The Giant Magellan Telescope(GMT)[C]//Proc of SPIE. 2006: 77334Z.
    [12]
    李圣怡, 彭小强. 光学零件可控柔体制造的理论基础与方法[J]. 机械工程学报, 2013, 49(17): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201317001.htm
    [13]
    Waluschka E. Cylindrical optic figuring dwell time optimization[C]//Proc of SPIE. 2000, 4318: 25-32.
    [14]
    Tuell M T. Novel tooling for production of aspheric surfaces[D]. Tucson: University of Arizona, 2002.
    [15]
    潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.

    Pan Junhua. Design, processing and testing of optical aspheric surface. Suzhou: Soochow University Press, 2004
    [16]
    Dumas P, Hall C, Hallock B, et al. Complete sub-aperture pre-polishing & finishing solution to improve speed and determinism in asphere manufacture[C]//Proc of SPIE. 2007: 667111.
    [17]
    袁巨龙, 吴喆, 吕冰海, 等. 非球面超精密抛光技术研究现状[J]. 机械工程学报, 2012, 48(23): 167-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201223024.htm

    Yuan Julong, Wu Zhe, Lu Binghai, et al. Research status of aspheric surface ultra-precision polishing technology. Journal of Mechanical Engineering, 2012, 48(23): 167-177 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201223024.htm
    [18]
    Goodman D S. Handbook of optics[M]. New York: McGraw Hill, 1995.
    [19]
    Li Xiaoping, Zhao Yiwen, Lei Min. High precision and stability temperature control system for the immersion liquid in immersion lithography[J]. Flow Measurement and Instrumentation, 2016, 53: 317-325.
    [20]
    Alexander K, Giuseppe C, Carlos P, et al. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications. [J]. Optics Letters, 2016, 41(15): 3423-3426.
    [21]
    Saner C, Lu L, Zhang D, et al. Chemical approaches for nanoscale patterning based on particle lithography with proteins and organic thin films[J]. Nanotechnology Reviews, 2015, 4(2): 129-143.
    [22]
    邹志同. EUV光刻技术与摩尔定律[J]. 集成电路应用, 2017(3): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDL201703013.htm

    Zou Zhitong. EUV lithography and Moore's law. Integrated Circuit Applications, 2017(3): 50-52 https://www.cnki.com.cn/Article/CJFDTOTAL-JCDL201703013.htm
    [23]
    Plummer W T, Chin A K. Method and reflective apparatus for combining high-power laser beams: U.S. Patent 9496675[P]. 2016-11-15.
    [24]
    Simard L, Ellerbroek B, Bhatia R, et al. Thirty meter telescope science instruments: A status report[C]//Proc of SPIE. 2016: 9908V1.
    [25]
    Hu H, Dai Y F, Peng X Q, et al. Research on reducing the edge effect in magnetorheological finishing[J]. Applied Optics, 2011, 50(9): 1220-1226.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1181) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return