Volume 31 Issue 6
Jul.  2019
Turn off MathJax
Article Contents
Yang Hang, Ma Dengqiu, Zhang Qiang, et al. Novel fluid field analysis method for ultra-precision machining based on christopherson iteration[J]. High Power Laser and Particle Beams, 2019, 31: 062002. doi: 10.11884/HPLPB201931.180373
Citation: Yang Hang, Ma Dengqiu, Zhang Qiang, et al. Novel fluid field analysis method for ultra-precision machining based on christopherson iteration[J]. High Power Laser and Particle Beams, 2019, 31: 062002. doi: 10.11884/HPLPB201931.180373

Novel fluid field analysis method for ultra-precision machining based on christopherson iteration

doi: 10.11884/HPLPB201931.180373
  • Received Date: 2018-12-20
  • Rev Recd Date: 2019-02-21
  • Publish Date: 2019-07-15
  • With the development of ultra-precision machining technology, complex fluid is increasingly utilized. The analysis of ultra-precision machining fluid field is characterized by complex geometry, diverse constitutive equation and free boundary flow, which results in unsatisfactory analysis if adopting traditional numerical method. Based on general characteristic of fluid field, a robust and widely adaptable fluid analysis method is proposed in this paper by applying D. G. Christopherson's super-relaxation iterative method for nonnegative second order partial differential systems to ultra-precision machining fluid field analysis. Besides, taking magnetorheological finishing as an example, the numerical calculation of pressure field is conducted for the polishing area and it is revealed that the calculated pressure distribution has reasonable morphology and it extends from positive x axis to negative x axis, which agrees with the experiment results by Zheng Ligong et al. Moreover, the in-situ experimental measurement of normal pressure by Kistler sensor is conducted for immersion depth ranging over 0.1 to 0.3 mm, it is demonstrated that the relative errors of calculations against experimental results are all less than 20%, indicating that the proposed method is valid and accurate.
  • loading
  • [1]
    Cao Z C, Cheung C F. A study of materials removal mechanisms for fluid jet polishing using computational fluid dynamics modeling[C]//ASPE 2014, 2014: 496-501.
    [2]
    Hwang Y, HaK G, Kim Y B, et al. Suppression of the inflection pattern in ultraprecision grinding through the minimization of the hydrodynamic force using a toothed wheel[J]. International Journal of Machine Tools and Manufacture, 2016, 100: 105-115. doi: 10.1016/j.ijmachtools.2015.10.009
    [3]
    Namba Y, Katagiri M. Ultraprecision grinding of potassium dihydrogen phosphate crystals for getting optical surfaces[C]//Proc of SPIE. 1999, 3578: 692-693.
    [4]
    李智钢, 鲍振军, 朱衡, 等. 多磨头数控抛光对大口径离轴抛物面镜中频误差的抑制[J]. 强激光与粒子束, 2018, 30: 062003. doi: 10.11884/HPLPB201830.170457

    Li Zhigang, Bao Zhenjun, Zhu Heng, et al. Suppression of medium frequency error of off-axis parabolic mirror with large diameter by multi-head CNC polishing. High Power Laser and Particle Beams, 2018, 30: 062003 doi: 10.11884/HPLPB201830.170457
    [5]
    Niu H Y, Zhang X J. Research on computer controlled polishing technology of 124 mm aspheric reaction-burned silicon carbide mirror[J]. Optics and Precision Engineering, 2006, 14(4): 539-544. doi: 10.3321/j.issn:1004-924X.2006.04.003
    [6]
    李智钢. 计算机数控抛光对大口径离轴抛物面面形PSD的控制[C]//强激光材料与元器件学术研讨会暨激光破坏学术研讨会论文集2016: 312-312.

    Li Zhigang. Computer numerical control polishing on large diameter off-axis paraboloid shape PSD control //Proceedings of the Symposium on Strong Laser Materials and Components and Laser Damage Symposium. 2016: 312-312
    [7]
    Liu P, Lin B, Li Y, et al. Liquid film characteristic in fluid hydrodynamic fixed abrasive grinding[J]. International Journal of Advanced Manufacturing Technology, 2018, 96(9): 4205-4214.
    [8]
    Su Y T, Wang S Y, Chao P Y, et al. Investigation of elastic emission machining process: lubrication effects[J]. Precision Engineering, 1995, 17(3): 164-172. doi: 10.1016/0141-6359(94)00014-Q
    [9]
    Namba Y, Tsuwa H, Wada R. Ultra-precision float polishing machine[C]//CIRP Annals Manufacturing Technology. 1987: 211-214.
    [10]
    杨航, 朱正龙, 刘小雍, 等. 通用磁流变抛光斑空间确定性创成方法[J]. 组合机床与自动化加工技术, 2017(3): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201703014.htm

    Yang Hang, Zhu Zhenglong, Liu Xiaoyong, et al. General magnetorheological polishing spot space deterministic creation method. Modular Machine Tools and Automatic Processing Technology, 2017(3): 53-56 https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201703014.htm
    [11]
    Yang H, He J, Huang W, et al. Spot breeding method to evaluate the determinism of magnetorheological finishing[J]. Optical Engineering, 2017, 56(3): 1-6.
    [12]
    杨航, 何建国, 黄文, 等. 磁流变抛光去除函数获取的微分解耦方法[J]. 强激光与粒子束, 2015, 27: 082005. doi: 10.11884/HPLPB201527.082005

    Yang Hang, He Jianguo, Huang Wen, et al. Micro-decomposition coupling method obtained by magnetorheological polishing removal function. High Power Laser and Particle Beams, 2015, 27: 082005 doi: 10.11884/HPLPB201527.082005
    [13]
    Kanish T C, Narayanan S, Kuppan P, et al. Investigations on the finishing forces in magnetic Field Assisted Abrasive Finishing of SS316L[C]//GCMM. 2017: 611-620.
    [14]
    Zhang F, Yu X, Zhang Y, et al. Experimental study on polishing characteristics of ultrasonic magnetorheological compound finishing[C]// ISAAT. 2009: 235-239.
    [15]
    Cao Z C, Cheung C F. Theoretical modelling and analysis of the material removal characteristics in fluid jet polishing[J]. International Journal of Mechanical Sciences, 2014, 89: 158-166. doi: 10.1016/j.ijmecsci.2014.09.008
    [16]
    施春燕, 袁家虎, 伍凡, 等. 射流抛光多相紊流流场的数值模拟[J]. 强激光与粒子束, 2009, 21(1): 6-10. http://www.hplpb.com.cn/article/id/3822

    Shi Chunyan, Yuan JiaHu, Wu Fan, et al. Numerical simulation of jet polishing multiphase turbulent flow field. High Power Laser and Particle Beams, 2009, 21(1): 6-10 http://www.hplpb.com.cn/article/id/3822
    [17]
    Hoyng C. New MRF fluid focuses in on 1Å roughness[J]. Laser Focus World, 2014, 50(8): 53-58.
    [18]
    Ranjan P, Balasubramaniam R, Jain V K. Analysis of magnetorheological fluid behavior in chemo-mechanical magnetorheological finishing (CMMRF) process[J]. Precision Engineering, 2017, 49: 122-135.
    [19]
    Das M, Jain V K, Ghoshdastidar P S. A 2D CFD simulation of MR polishing medium in magnetic field-assisted finishing process using electromagnet[J]. International Journal of Advanced Manufacturing Technology, 2014, 76(1/4): 173-187.
    [20]
    Ji S M, Ge J Q, Tan D P, et al. Three-phase abrasive flow polishing and distribution characteristics of bubble collapse[J]. Optics and Precision Engineering, 2018, 26(2): 388-398.
    [21]
    Christopherson D G. The relaxation method in stress analysis[J]. British Journal of Applied Physics, 2002, 3(3): 65.
    [22]
    Cryer C W. The method of Christopherson for solving free boundary problems for infinite journal bearings by means of finite differences[J]. Mathematics of Computation, 1971, 25(115): 435-443.
    [23]
    Zheng Ligong, Li Longxiang, Wang Xiaokun, et al. Coordinate-origin calibration of removal function in Magnetorheological finishing[J]. Optics and Precision Engineering, 2017, 25(1): 8-14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (842) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return