Volume 31 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Chen Zhiqiang, Jia Wei, He Xiaoping, et al. Double peak phenomenon of applied pulse voltage induced by flashover around parallel-plate electrodes[J]. High Power Laser and Particle Beams, 2019, 31: 070005. doi: 10.11884/HPLPB201931.180383
Citation: Chen Zhiqiang, Jia Wei, He Xiaoping, et al. Double peak phenomenon of applied pulse voltage induced by flashover around parallel-plate electrodes[J]. High Power Laser and Particle Beams, 2019, 31: 070005. doi: 10.11884/HPLPB201931.180383

Double peak phenomenon of applied pulse voltage induced by flashover around parallel-plate electrodes

doi: 10.11884/HPLPB201931.180383
  • Received Date: 2018-12-28
  • Rev Recd Date: 2019-03-26
  • Publish Date: 2019-07-15
  • During the flashover experiments of parallel-plate electrodes in SF6, a double-peak phenomenon is discovered that a small peak occurs in the front-edge of the applied nanosecond pulse voltage which is originally smooth. In order to explore the cause of this phenomenon, the phenomenon is analyzed theoretically and ascribed to the discharge on the edge of the electrodes. The discharge enlarges the area of the parallel-plate electrodes, thus the equivalent capacitance of the electrodes is increased. The greater the change of the equivalent capacitance is, the more obvious the peak shows. Flashover experiments under different pressures are developed to validate the analysis. The results show that as the pressure increases, the peak is less and less obvious, and the amplitude of the small peak is higher and higher due to the suppression of the discharge in high pressure SF6, which is confirmed by the integrating images of the whole discharge process. Dendritic discharges occur on the edge of the electrodes during the flashover process. In low SF6 pressure, the stems are thick and bright, and generate many branches, but when the pressure is high, the number of stems and branches is reduced and the discharge channel also darkens.
  • loading
  • [1]
    邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016.

    Qiu Aici. Application of the pulse power technology. Xi'an: Shaanxi Science and Technology Press, 2016
    [2]
    毛从光, 程引会, 谢彦召. 高空电磁脉冲技术基础[M]. 北京: 科学出版社, 2018.

    Mao Congguang, Cheng Yinhui, Xie Yanzhao. Technological base of HEMP. Beijing: Science Press, 2018
    [3]
    Baum C E. EMP simulators for various types of nuclear EMP environments: an interim categorization[J]. IEEE Trans Electromagnetic Compatibility, 1978, 20(1): 35-53.
    [4]
    Bailey V, Carboni V, Eichenberger C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators[J]. IEEE Trans Plasma Science, 2010, 38(10): 2554-2558. doi: 10.1109/TPS.2010.2065245
    [5]
    Charles G, Lam S K, Naff J T, et al. Design and performance of the FEMP-2000: A fast risetime, 2 MV EMP pulser[C]//The 12th IEEE International Pulsed Power Conference. 1999: 1437-1440.
    [6]
    Schilling H, Schluter J, Peters M, et al. High voltage generator with fast risetime for EMP simulation[C]//The 10th IEEE International Pulsed Power Conference. 1995: 1359-1364.
    [7]
    Jung M, Weise T, Nitsch D, et al. Upgrade of a 350 kV NEMP HPD pulser to 1.2 MV[C]//26th International Power Modulator Symposium. 2004: 23-26.
    [8]
    陈维青, 何小平, 贾伟, 等. 2.5 MV快沿电磁脉冲模拟器脉冲功率源的研制[C]//第十四届全国核电子学与核探测技术学术年会. 北京: 中国电子学会核电子学与核探测技术分会, 2008: 689-693.

    Chen Weiqing, He Xiaoping, Jia Wei, et al. Development of a 2.5MV fast pulse generator for EMP simulation//14th National Conference on Nuclear Electronics & Detection Technology. Beijing: Nuclear Electronics and Detection Technology Branch, Chinese Institute of Electronics, 2008: 689-693
    [9]
    Giri D V, Baum C E. Theoretical considerations for optimal positioning of peaker capacitor arms about a Marx generator parallel to a ground plane[J]. IEEE Trans Electromagnetic Compatibility, 1989, 32(2): 117-124.
    [10]
    Jia W, Chen Z Q, Tang J, et al. A 800 kV compact peaking capacitor for nanosecond generator[J]. Review of Scientific Instruments, 2014, 85: 094706. doi: 10.1063/1.4895158
    [11]
    陈永真, 李锦. 电容器手册[M]. 北京: 科学出版社, 2011.

    Chen Yongzhen, Li Jin. Handbook of capacitors. Beijing: Science Press, 2011
    [12]
    贾伟, 陈志强, 郭帆, 等. 基于Marx发生器的中小型电磁脉冲模拟器驱动源[J]. 强激光与粒子束, 2018, 30: 073203. doi: 10.11884/HPLPB201830.170401

    Jia Wei, Chen Zhiqiang, Guo Fan, et al. Drivers of small and medium scale electromagnetic pulse simulator based on Marx generator. High Power Laser and Particle Beams, 2018, 30: 073203 doi: 10.11884/HPLPB201830.170401
    [13]
    刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005.

    Liu Xisan. High power impulse technique. Beijing: National Defense Industry Press, 2005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (2354) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return