Volume 31 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
Rao Junfeng, Li Chengjian, Li Zi, et al. All solid state high-frequency and high voltage pulsed power supply[J]. High Power Laser and Particle Beams, 2019, 31: 035001. doi: 10.11884/HPLPB201931.190005
Citation: Rao Junfeng, Li Chengjian, Li Zi, et al. All solid state high-frequency and high voltage pulsed power supply[J]. High Power Laser and Particle Beams, 2019, 31: 035001. doi: 10.11884/HPLPB201931.190005

All solid state high-frequency and high voltage pulsed power supply

doi: 10.11884/HPLPB201931.190005
  • Received Date: 2019-01-07
  • Rev Recd Date: 2019-02-12
  • Publish Date: 2019-03-15
  • In this paper, an all-solid-state high-frequency and high-voltage pulse generator is designed. The main circuit uses a half-bridge solid-state Marx circuit with IGBTs as main switches. The drive circuit uses a magnetic-isolated synchronous driver with negative voltage bias. Charge and discharge control signals and fault diagnosis and protection operation are processed by an FPGA. The capacitors in different stages can be charged quickly in parallel through low-impedance loops, and meanwhile the slow tailing pulses are truncated to generate square pulses. Besides, the pulse width over 200 μs are achieved due to the hold-on of the gate-emitter capacitors, which can be used to generate high-voltage pulsed electric field. In addition, this pulse generator can also output various numbers of high-frequency pulses with adjustable pulse numbers in burst mode. Experiments show that pulses with the output voltage amplitude of 40 kV, the peak current of 100 A, the repetitive frequency of 30 kHz, the rise time and the fall time less than 100ns are obtained. The burst mode frequency can be up to 200 kHz. The designed pulse generator is able to output high-voltage pulses with continuously adjustable parameters and the generator's size is very small.
  • loading
  • [1]
    Krishnaswamy P, Kuthi A, Vernier P T, et al. Compact subnanosecond pulse genernator using avalanche transistors for cell electroperturbation studies[J]. IEEE Trans Dielectrics and Electrical Insulation, 2007, 14(4): 1422-1428.
    [2]
    李黎, 彭明洋, 腾云, 等. 大气压重频纳秒脉冲放电对尼龙纤维的表面改性[J]. 高电压技术, 2016, 42(3): 753-761. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603009.htm

    Li Li, Peng Mingyang, Teng Yun, et al. Surface modification of nylon fiber by atmospheric pressure and repeated nanosecond pulse discharge. High Voltage Engineering, 2016, 42(3): 753-761 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603009.htm
    [3]
    Lowke J J. Plasma predictions: past, present and future[J]. Plasma Sources Science & Technology, 2013, 22(2): 23002-23015.
    [4]
    Katja F, Hartmut S, Thomas V W, et al. High rate etching of polymers by means of an atmospheric pressure plasma jet[J]. Plasma Processes & Polymers, 2011, 8(1): 51-58.
    [5]
    章程, 邵涛, 于洋, 等. 纳秒脉冲介质阻挡放电特性及其聚合物材料表面改性[J]. 电工技术学报, 2010, 25(5): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201005008.htm

    Zhang Cheng, Shao Tao, Yu Yang, et al. Nanosecond pulse dielectric barrier discharge characteristics and surface modification of polymer materials. Transactions of China Electrotechnical Society, 2010, 25(5): 31-37 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201005008.htm
    [6]
    Wei L S, Yuan D K, Zhang Y F, et al. Experimental and theoretical study of ozene generation in pulsed positive dielectric barrier discharge[J]. Vacuum, 2014, 104(2): 61-64.
    [7]
    曹鹤飞, 原青云, 刘浩, 等. 天器背面接地介质材料等离子体充电研究[J]. 强激光与粒子束, 2015, 27: 103204. doi: 10.11884/HPLPB201527.103204

    Cao Hefei, Yuan Qingyun, Liu Hao, et al. Research on surface charging of back grounded dielectric material of spacecraft. High Power Laser and Particle Beams, 2015, 27: 103204 doi: 10.11884/HPLPB201527.103204
    [8]
    Redondo L M, Silva J F. Repetitive high-voltage solid-state Marx modulator design for various load conditions[J]. IEEE Trans Plasma Science, 2009, 37(8): 1632-1637. doi: 10.1109/TPS.2009.2023221
    [9]
    Liu Kefu, Qiu Jian, Wu Yifan, et al. An all solid-state pulsed power generator based on Marx generator[C]//Proc of 16th IEEE Int Pulsed Power Conf. 2007: 720-723.
    [10]
    江伟华. 基于固态器件的高重频脉冲功率技术[J]. 强激光与粒子束, 2010, 22 (3): 561-564. http://www.hplpb.com.cn/article/id/27

    Jiang Weihua. High repetition-rate pulsed power generation using solid-state switches. High Power Laser and Particle Beams, 2010, 22(3): 561-564 http://www.hplpb.com.cn/article/id/27
    [11]
    任亚东, 李世平, 颜骥. 半导体脉冲功率开关的最新进展[J]. 强激光与粒子束, 2012, 24(3): 771-775. http://www.hplpb.com.cn/article/id/6770

    Ren Yadong, Li Shiping, Yan Ji. Recent developments of semiconductor pulsed power switch. High Power Laser and Particle Beams, 2012, 24(3): 771-775 http://www.hplpb.com.cn/article/id/6770
    [12]
    Rukin S N. High-power nanosecond pulse generators based on semiconductor opening switches[J]. Instrum Exp Tech, 1999, 42: 439-467.
    [13]
    Yokoo T, Saiki K. Repetitive pulsed high-voltage generator using semiconductor opening switch for atmospheric discharge[J]. IEEE Trans Plasma Science, 2008, 36(5): 2638-2643.
    [14]
    姚陈果, 章锡明. 基于现场可编程门阵列的全固态高压ns脉冲发生器[J]. 高电压技术, 2012, 38(4): 929-934. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201204023.htm

    Yao Chenguo, Zhang Ximing. All-solid-state high-voltage nanosecond pulse generator based on field programmable gate array. High Voltage Engineering, 2012, 38(4): 929-934 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201204023.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1844) PDF downloads(269) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return