Volume 31 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
Jiang Peijie, Li Zhenghong, Wu Yang. Operating characteristics of an S-band relativistic backward wave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2019, 31: 033001. doi: 10.11884/HPLPB201931.190010
Citation: Jiang Peijie, Li Zhenghong, Wu Yang. Operating characteristics of an S-band relativistic backward wave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2019, 31: 033001. doi: 10.11884/HPLPB201931.190010

Operating characteristics of an S-band relativistic backward wave oscillator with low magnetic field

doi: 10.11884/HPLPB201931.190010
  • Received Date: 2019-01-14
  • Rev Recd Date: 2019-02-22
  • Publish Date: 2019-03-15
  • In order to reduce the volume and weight of the high power microwave (HPM) system, an S-band relativistic backward wave oscillator(RBWO) operating at low guiding magnetic field is designed. The operation magnetic field of the RBWO is lower than that of the electron cyclotron resonance, which will decrease the electron beam transmission efficiency and beam-wave interaction impedance. By increasing the distance between the electron beam and the inner wall of the device, the transmission efficiency of the electron beam can be improved. The deep slow-wave structure is used as extraction cavity to enhance the efficiency of beam-wave interaction. The shallow slow-wave structure in front of extraction cavity is adopted to ensure synchronization of electron velocity and microwave phase velocity. The high power microwave is acquired under low guiding magnetic field. Simulation shows that 670 MW output power with 25% efficiency is generated under a guiding magnetic field of 0.17 T, electron voltage of 435 kV and beam current of 6.5 kA. Compared to the conventional magnetic field system (B of 0.8 T), the radius of solenoid of the 0.17 T low magnetic field system applied to the RBWO is reduced by 20%, and the energy consumption is reduced by about 93.2%.
  • loading
  • [1]
    周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007: 47-55.

    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources. Beijing: Atomic Energy Press, 2007: 47-55
    [2]
    邵剑波. X波段低磁场相对论返波管研究[D]. 绵阳: 西南科技大学, 2015: 3-10.

    Shao Jianbo. Study on X-band relativistic backward wave oscillator with low guiding magnetic field. Mianyang: Southwest University of Science and Technology, 2015: 3-10
    [3]
    邵剑波, 马乔生, 谢鸿全, 等. X波段低磁场相对论返波管振荡器实验研究[J]. 微波学报, 2015, 31(3): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201503014.htm

    Shao Jianbo, Ma Qiaosheng, Xie Hongquan, et al. Experimental study on X-band relativistic backward wave oscillator with low magnetic field. Journal of Microwaves, 2015, 31(3): 62-65 https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201503014.htm
    [4]
    Li Xiaoze, Song Wei, Tan Weibing, et al. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field[J]. Physics of Plasmas, 2016, 23: 073101. doi: 10.1063/1.4954903
    [5]
    Vlasov A N, Ilyin A S, Carmel Y. Cyclotron effects in relativistic backward-wave oscillators operating at low magnetic fields[J]. IEEE Transactions on Plasma Science, 1998, 26(3): 605-614. doi: 10.1109/27.700797
    [6]
    Xiao Renzhen, Tan Weibing, Li Xiaoze, et al. A high-efficiency overmoded klystron-like relativistic backward wave oscillator with low guiding magnetic field[J]. Physics of Plasmas, 2012, 19: 053306.
    [7]
    Wu Yang, Li Zhenghong, Xu Zhou. Experimental study of an X-band phase-locked relativistic backward wave oscillator[J]. Physics of Plasmas, 2015, 22: 113102. doi: 10.1063/1.4935053
    [8]
    Ma Qiaosheng, Fan Zhikai, Zhou Chuanming. Simulation of the relativistic backward wave oscillator with a sinusoidal guiding magnetic field[J]. Chinese Physics C, 2009, 33(3): 232-235. doi: 10.1088/1674-1137/33/3/013
    [9]
    Li Xiaoze, Song Wei, Tan Weibing, et al. Simulation of a low magnetic field relativistic backward wave oscillator with single mode structure[J]. Physics of Plasmas, 2016, 23: 023115. doi: 10.1063/1.4942423
    [10]
    Wu Yang. Investigation of Tritron as a high power microwave oscillator[J]. Physics of Plasmas, 2017, 24: 073105. doi: 10.1063/1.4990559
    [11]
    杨晓亮, 罗光耀, 黄华, 等. 基于超级电容储能方式的秒级磁场[J]. 太赫兹科学与电子信息学报, 2017, 15(6): 1004-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201706021.htm

    Yang Xiaoliang, Luo Guangyao, Huang Hua, et al. Design of second-level magnetic field based on storage supercapacitor. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(6): 1004-1008 https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201706021.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (1083) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return