Volume 31 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
Wang Zihao, Li Chunhua, Wang Zhizhuo, et al. Contact stiffness measurement based on modal matching method[J]. High Power Laser and Particle Beams, 2019, 31: 085101. doi: 10.11884/HPLPB201931.190033
Citation: Wang Zihao, Li Chunhua, Wang Zhizhuo, et al. Contact stiffness measurement based on modal matching method[J]. High Power Laser and Particle Beams, 2019, 31: 085101. doi: 10.11884/HPLPB201931.190033

Contact stiffness measurement based on modal matching method

doi: 10.11884/HPLPB201931.190033
  • Received Date: 2019-01-24
  • Rev Recd Date: 2019-04-09
  • Publish Date: 2019-08-15
  • In the simulation of the accelerator magnet support system, the parts connected to the ground by the magnet bracket are usually treated as “fixed”, but in some cases, this treatment will cause a large error between the simulation results and the measurement results. This paper proposes an indirect method to measure the contact stiffness of rough surface, accurately quantify the contact stiffness of rough surface, and make the simulation of the whole system well match with the test results. Based on the contact stiffness model, ANSYS finite element simulation method and modal test method, the accuracy of indirect measurement method was verified by taking the test piece of anchor bolt fixation method as an example, so that the contact stiffness was accurately quantified. This method can also provide a basis for improving the overall stiffness of the accelerator magnet support system.
  • loading
  • [1]
    Preissner C, Cease H, Collins J, et al. Nostradamus and the synchrotron engineer: Key aspects of predicting accelerator structural response[C]//International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation. 2016: 272-276.
    [2]
    Nudell J, Liu Z, Preissner C, et al. Preliminary design and analysis of the FODO module support system for the APS-U storage ring[C]//International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation. 2016: 83-86.
    [3]
    Cianciosi F, Brochard T, Marion P, et al. The girder system for the new ESRF storage ring[C]//International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation. 2016: 147-151.
    [4]
    陈学前, 沈展鹏, 刘信恩, 等. 地脉动环境下反射镜架系统的镜片转角响应计算[J]. 强激光与粒子束, 2018, 30: 072001. doi: 10.11884/HPLPB201830.170529

    Chen Xueqian, Shen Zhanpeng, Liu Xin'en, et al. Analysis on rotation angle of mirror in reflector system under ground random vibration. High Power Laser and Particle Beams, 2018, 30: 072001 doi: 10.11884/HPLPB201830.170529
    [5]
    王坤, 何静, 游安清. 光束-靶面入射角非接触式测量方法分析[J]. 强激光与粒子束, 2014, 26: 101010. doi: 10.11884/HPLPB201426.101010

    Wang Kun, He Jing, You Anqing. Analysis on non-contact measurement of ray-target incident angle. High Power Laser and Particle Beams, 2014, 26: 101010 doi: 10.11884/HPLPB201426.101010
    [6]
    张敏, 赵平, 张蓉. 气浮隔振平台模态实验分析[J]. 强激光与粒子束, 2013, 25(S0): 87-90. http://www.hplpb.com.cn/article/id/7799

    Zhang Min, Zhao Ping, Zhang Rong. Application of black-box testing technologies to command and control subsystem software testing. High Power Laser and Particle Beams, 2013, 25(S0): 87-90 http://www.hplpb.com.cn/article/id/7799
    [7]
    杨航, 汪玉兰, 汪雪, 等. 精密热处理过程温度测量多模态重构方法[J]. 强激光与粒子束, 2019, 31: 012003. doi: 10.11884/HPLPB201931.180060

    Yang Hang, Wang Yulan, Wang Xue, et al. Multimodal reconstruction method of precision heat treatment process's temperature measurement. High Power Laser and Particle Beams, 2019, 31: 012003 doi: 10.11884/HPLPB201931.180060
    [8]
    田小龙, 王雯, 傅卫平, 等. 考虑微凸体相互作用的机械结合面接触刚度模型[J]. 机械工程学报, 2017, 53(17): 149-159.

    Tian Xiaolong, Wang Wen, Fu Weiping, et al. Contact stiffness model of mechanical joint surfaces considering the asperity interactions. 2017, 53(17): 149-159
    [9]
    Greenwood J, Williamson J. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society, 1966, 295(42): 300-319.
    [10]
    Chang W, Etsion I, Bogy D. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109(2): 257-263. doi: 10.1115/1.3261348
    [11]
    Zhao Yongwu, Maietta D, Chang Liang. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 1999, 122(1): 86-93.
    [12]
    Zhao Yongwu, Chang Liang. A model of asperity interactions in elastic-plastic contact of rough surfaces[J]. Journal of Tribology, 2000, 123(4): 857-864. https://pennstate.pure.elsevier.com/en/publications/a-model-of-asperity-interactions-in-elastic-plastic-contact-of-ro
    [13]
    Kogut L, Etsion I. A finite element based elastic-plastic model for the contact of rough surfaces[J]. Tribology Transactions, 2003, 46(3): 383-390. doi: 10.1080/10402000308982641
    [14]
    Nuri K, Halling J. The normal approach between rough flat surfaces in contact[J]. Wear, 1975, 32(1): 81-93. https://www.sciencedirect.com/science/article/pii/0043164875902069
    [15]
    WangHaijing, Li Chunhua, Zhu Hongyan, et al. Test of magnet girder prototypes for HEPS-TF[C]//International Particle Accelerator Conference. 2018: 76-79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views (1648) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return