Volume 31 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Liu Qing, Cui Xikai, Ma Longxiong, et al. Sensitivity analysis of geomagnetically induced current based on hyperbolic scheme for truncating polynomial chaos expansion[J]. High Power Laser and Particle Beams, 2019, 31: 070010. doi: 10.11884/HPLPB201931.190106
Citation: Liu Qing, Cui Xikai, Ma Longxiong, et al. Sensitivity analysis of geomagnetically induced current based on hyperbolic scheme for truncating polynomial chaos expansion[J]. High Power Laser and Particle Beams, 2019, 31: 070010. doi: 10.11884/HPLPB201931.190106

Sensitivity analysis of geomagnetically induced current based on hyperbolic scheme for truncating polynomial chaos expansion

doi: 10.11884/HPLPB201931.190106
  • Received Date: 2019-04-11
  • Rev Recd Date: 2019-06-03
  • Publish Date: 2019-07-15
  • Geomagnetically Induced Current (GIC) can cause DC bias of the transformer.The derivative effect of DC bias may threaten the safety of power equipment and power grid.In view of the fact that many input parameters are uncertain variables in GIC calculations, it is necessary to study the uncertainty of GIC and the sensitivity of GIC to input variables.In this paper, based on polynomial chaos expansion (PCE) and hyperbolic scheme for truncating the polynomial chaos expansion, a GIC uncertainty quantization method is proposed.Using the constructed polynomial chaos expansion, the sensitivity index of GIC to input parameters is derived.For the planned Xinjiang power grid, the proposed method is used to measure the uncertainty of GIC, and the statistics of mean and variance of GIC are obtained.The Sobol sensitivity index is calculated according to the chaotic polynomial coefficient, and the sensitivity of GIC to input parameters such as electric field amplitude and grid DC resistance is obtained.Compared with the Monte Carlo method (MC), this method is not only precise, but also greatly improves the computational efficiency.
  • loading
  • [1]
    Albertson V D, Thorson J M, Clayton R E, et al. Solar-induced-currents in power systems: Cause and effects[J]. IEEE Trans Power Apparatus & Systems, 1973, 92(2): 471-477.
    [2]
    Zheng K, Liu L G, Boteler D, et al. Calculation analysis of geomagnetically induced currents with different network topologies[C]//IEEE Power and Energy Society General Meeting. 2013: 1-4.
    [3]
    刘春明, 王璇, 刘连光, 等. 考虑海岸效应影响的电网地磁感应电流的计算方法[J]. 中国电机工程学报, 2016, 36(22): 6059-6066. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201622006.htm

    Liu Chunming, Wang Xuan, Liu Lianguang, et al. Calculation method of geomagnetically induced currents in the power grid considering the influence of the coast effect. Proceedings of the CSEE, 2016, 36(22): 6059-6066 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201622006.htm
    [4]
    Pirjola R, Viljanen A. Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length[J]. Annales Geophysicae, 1998, 16(11): 1434-1444. doi: 10.1007/s00585-998-1434-6
    [5]
    Pirjola R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems[J]. Surv Geophys, 2002, 23(1): 71-90. doi: 10.1023/A:1014816009303
    [6]
    Boteler D H, Pirjola R J. The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 132(1): 31-40.
    [7]
    Pirjola R. Calculation of geomagnetically induced currents (GIC) in a high-voltage electric power transmission system and estimation of effects of overhead shield wires on GIC modelling[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(12): 1305-1311. doi: 10.1016/j.jastp.2007.04.001
    [8]
    Horton R, Boteler D, Overbye T J, et al. A test case for the calculation of geomagnetically induced currents[J]. IEEE Trans Power Delivery, 2012, 27(4): 2368-2373. doi: 10.1109/TPWRD.2012.2206407
    [9]
    Takasu N, Oshi T, Miyawaki F, et al. An experimental analysis of DC excitation of transformers by geomagnetically induced currents[J]. IEEE Trans Power Delivery, 1994, 9(2): 1173-1182. doi: 10.1109/61.296304
    [10]
    刘连光, 吴伟丽. 磁暴影响电力系统安全风险评估思路与理论框架[J]. 中国电机工程学报, 2014, 34(10): 1583-1591. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201410010.htm

    Liu Lianguang, Wu Weili. Security risk assessment ideas and theoretical framework for power system considering geomagnetic storm. Proceedings of the CSE, 2014, 34(10): 1583-1591 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201410010.htm
    [11]
    Zheng K, Boteler D, Pirjola R J, et al. Effects of system characteristics on geomagnetically induced currents[J]. IEEE Trans Power Delivery, 2014, 29(2): 890-898. doi: 10.1109/TPWRD.2013.2281191
    [12]
    刘连光, 郭世晓, 魏恺, 等. 基于全节点模型的三华电网地磁感应电流计算[J]. 电网技术, 2014, 38(7): 1946-1952. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201407035.htm

    Liu Lianguang, Guo Shixiao, Wei Kai, et al. Calculation of geomagnetically induced currents in interconnected North China- Central China-East China power grid based on full-node GIC model. Power System Technology, 2014, 38(7): 1946-1952 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201407035.htm
    [13]
    刘青, 韩康康, 徐婷, 等. 新疆2020年规划电网地磁感应电流的分布规律及敏感性分析[J]. 电网技术, 2017, 41(11): 3678-3684. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201711041.htm

    Liu Qing, Han Kangkang, Xu Ting, et. al. Analysis of distribution regularities and sensitivity of geomagnetic induced currents in planned Xinjiang 750 kV power grid in 2020. Power System Technology, 2017, 41(11): 3678-3684 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201711041.htm
    [14]
    熊芬芬, 杨树兴, 刘宇, 等. 工程概率不确定性分析方法[M]. 北京: 科学出版社.

    Xiong Fenfen, Yang Shuxing, Liu Yu, et al. Engineering probability uncertainty analysis method. Beijing: Science Press, 2015
    [15]
    Liu Qing, Xie Yanzhao, Ning Dong, et al. Uncertainty quantification of geo-magnetically induced currents in UHV power grid[J]. IEEE Trans Electromagnetic Compatibility, to be published.
    [16]
    Isukapalli S S, Roy A, Georgopoulos P G. Efficient sensitivity/ uncertainty analysis using the combined stochastic response surface method and automated differentiation: Application to environmental and biological systems[J]. Risk Analysis, 2010, 20(5): 591-602.
    [17]
    Cooper M D, Wu W, Mccue L S. Non-intrusive polynomial chaos for efficient uncertainty analysis in parametric roll simulations[J]. Journal of Marine Science & Technology, 2016, 21(2): 282-296.
    [18]
    郑宽, 刘连光, Boteler D H, 等. 多电压等级电网的GIC-Benchmark建模方法[J]. 中国电机工程学报, 2013, 33(16): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201316025.htm

    Zheng Kuan, Liu Lianguang, Boteler D H, et al. Modelling geomagnetically induced currents in multiple voltage levels of a power system illustrated using the GIC-Benchmark case[J]. Proceedings of the CSEE, 2013, 33(16): 179-186 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201316025.htm
    [19]
    何金良, 张波, 曾嵘, 等. 1000 kV特高压变电站接地系统的设计[J]. 中国电机工程学报, 2009, 29(7): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200907002.htm

    He Jinliang, Zhang Bo, Zeng Rong, et al. Grounding system design of 1 000 kV ultra-high voltage substation. Proceedings of the CSEE, 2009, 29(7): 7-12 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200907002.htm
    [20]
    Li X, Wang J M, Tang W, et al. Stochastic analysis for crosstalk noise of coupled interconnects with process variations[C]//Proceeding of the IEEE International Conference on Integrated Circuit Design and Technology and Tutorial. 2008: 289-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (1362) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return